
A Comparison of the Sobel Filter in C, OpenCV and CUDA

Daniele Gader
Department of Computer Science, University of Pisa

Programming Tools for Parallel and Distributed Systems course

2nd Semester of Academic Year 2018-2019

1 Algorithm Introduction
The Sobel Filter, also known as Sobel Operator, is an algorithm used in computer vision and image processing
for identifying regions characterised by sharp changes in intensity (i.e., edges). It is a discrete differentiation
operator, which computes an approximation of the gradient of the image intensity function by convolving the
input image with a 3x3 kernel in the horizontal and vertical directions, respectively. As outlined in [2], such
operator lies at the basis of several algorithms for pedestrian detection in autonomous driving systems.

Figure 1a shows an input image for the Sobel filter. Figure 1b shows the application of the Sobel filter
algorithm outlined in Section 1.1 to the input image.

(a) Input RGB image I of the Sobel Filter (b) Application of the Sobel Filter onto I

Figure 1: Input RGB image and resulting image, following Sobel Filter’s application

1.1 Algorithm Description
Given an input RGB image I, the Sobel Filter algorithm proceeds according to the following phases:

1. Convert I to a gray-scale image B according to Formula 1. Such formula is applied to every pixel p of
I to produce a corresponding gray-scale pixel b of B. pr, pg, pb represent the R,G,B intensity of pixel p,
respectively, and each one lies in the range [0,255]. Figure 2 shows the resulting gray-scale image B.

b = 0.3 ∗ pr + 0.59 ∗ pg + 0.11 ∗ pb (1)

2. Compute Gx, an approximation of the horizontal gradient of B, by convolving B with a 3x3 kernel
according to Formula 2. ∗ denotes the 2-dimensional convolution operation. Figure 3a shows the resulting
Gx.

Gx =

−1 0 +1
−2 0 +2
−1 0 +1

 ∗B (2)

1

Figure 2: Gray-scale image B resulting from phase (1) of Section 1.1

3. Compute Gy, an approximation of the vertical gradient of B, by convolving B with a 3x3 kernel according
to Formula 3. Figure 3b shows the resulting Gy.

Gy =

−1 −2 −1
0 0 0
+1 +2 +1

 ∗B (3)

(a) Horizontal gradient Gx resulting
from phase (2) of Section 1.1. Gx

increases in the "right" direction.

(b) Vertical gradient Gy resulting
from phase (3) of Section 1.1. Gy

increases in the "down" direction.

Figure 3: Resulting Gx and Gy, following the respective application of Formulas 2 and 3 onto B.

4. Compute G, the final gradient magnitude, by combining the horizontal gradient Gx and the vertical
gradient Gy according to Formula 4. Figure 4 shows the resulting G.

G =
√
G2

x +G2
y (4)

2 Implementation
Initially, I propose to implement a sequential version of the Sobel Filter in OpenCV and in the native C
programming language. Afterwards, I aim to implement a parallel GPU version in CUDA. These versions will
be tested on the hardware outlined in Table 1.

The GPU (CUDA) version of the program is just tested on the Laptop and Bruciato hardware because the
Gewurztraminer and Raspberry PI 3 B+ machines do not feature a CUDA-capable device.

The OpenCV version of the program is just tested on the Laptop and Raspberry PI 3 B+ hardware because
the report writer does not have super-user permissions on the Gewurztraminer and Bruciato machines to install
OpenCV.

2

Figure 4: Gradient magnitude G resulting from phase (4) of Section 1.1

Nickname CPU GPU RAM Hard Disk Native C GPU OpenCV

Laptop Intel Core i7
8565U@1.8 GHz

Geforce
MX 150
390.116

16 GBs SSD - 512 GBs x x x

Bruciato Intel Core i7
7700@3.6 GHz

Geforce
GTX 1080
384.81

63 GBs Magnetic - 2 TBs x x

Gewurztraminer Intel Core i7
4770k @3.5 GHz - 31 GBs SSD - 120 GBs x

Raspberry PI 3 B+ ARM v8@1.4 GHz Broadcom
Videocore IV 1 GB MicroSD - 32 GBs x x

Table 1: Technical characteristics of the hardware used for benchmarking the native C, GPU and OpenCV
versions of the implemented Sobel Filter

2.1 Sequential Version - Native C
The sequential version of the Sobel Filter was implemented in native C programming language 1. It operates
according to the following steps:

1. Step. Convert input JPG/PNG/GIF image to RGB format: By leveraging the ’convert’ utility
of the ’imagemagick’ command-line package, a format- and encoding-independent representation (I) of
the input image is produced in RGB format. In such format, every pixel p of I has an R,G,B component:
pr, pg, pb.

2. Step. Convert RGB image to Gray-Scale: By applying Formula 1, we convert every single pixel p
of the RGB image I in a sequential manner to product pixel b of the gray-scale image B.

3. Step. Compute Horizontal Gradient: By applying Formula 2, we compute the horizontal gradient
Gx over all pixels b of B by taking a 3x3 region around b and convolving it with the 3x3 kernel of Formula
2.

4. Step. Compute Vertical Gradient: By applying Formula 3, we compute the vertical gradient Gy over
all pixels b of B in a sequential manner by taking a 3x3 region around b and convolving it with the 3x3
kernel of Formula 3.

5. Step. Combine Vertical Gradient and Horizontal Gradient: We combine the horizontal and
vertical gradient in a sequential manner over all the pixels gx of Gx and gy of Gy to yield pixel g of G
according to Formula 5.

g =
√
g2x + g2y (5)

6. Step. Convert gray file to PNG: The resulting ’.gray’ file from step (5) is converted to a PNG image
by using the ’convert’ utility of the ’imagemagick’ command-line package.

1The native C implementation is available at https://github.com/DanyEle/Sobel_Filter/tree/master/Native_Sobel

3

https://github.com/DanyEle/Sobel_Filter/tree/master/Native_Sobel

2.2 GPU Version - CUDA
CUDA (Compute Unified Device Architecture) is a C/C++ parallel computing platform that easens the process
of writing GPU code. The parallel GPU version of the Sobel Filter was implemented leveraging the CUDA
framework 2.

CUDA parallelisation: The CUDA implementation leverages the fact that the computation highlighted
in steps (2), (3), (4), (5) of Section 2.1 occurs in parallel over every single pixel p of the input image I and B.
Therefore, a Map parallelisation is applied over every single pixel b of the gray-scale image B and every single
pixel p of the input image I.

Such parallel abstraction is implemented concretely in three CUDA kernels (phase (2) and (3) share the
same code) having the following common characteristics:

kernel_name <<< width, height >>> (argument_1, argument_2, ..., argument_n)

The image width represents the amount of blocks in the CUDA grid, whereas the image height is the
amount of threads per CUDA block. Such parallelisation is shown in Figure 2.2. In this manner, every single
pixel is allocated one single thread, hence:

Amount of Pixels = width * height

width = blocks; height = threads

Amount of Threads = blocks * threads

Figure 5: A 2D hierarchy of blocks and threads used to process an image using one thread per pixel [3].
Presently, it shows 6 blocks and 16x16 threads per block. In my CUDA parallelisation, the amount of threads
and blocks is equal, instead.

The CUDA implementation proceeds according to the following steps:
2The CUDA implementation is available at https://github.com/DanyEle/Sobel_Filter/tree/master/CUDA_Sobel

4

https://github.com/DanyEle/Sobel_Filter/tree/master/CUDA_Sobel

1. Step. Convert input JPG/PNG/GIF image to RGB format: The ’convert’ utility proceeds
sequentially in the initial phase of the computation.

2. Step. Convert RGB image to Gray-Scale: We notice that Formula 1 can be applied in parallel over
the pr, pg, pb components of the p pixel of the RGB input image I. Therefore, a Map Parallelisation is
applied over all pixels of the input image according to the schema in Figure 2.2 to produce pixel b of the
gray-scale image B.

3. Step. Compute Horizontal Gradient: We notice that Formula 2 can be applied in parallel to every
single pixel b of B. We hence compute the horizontal gradient Gx over all pixels b of B by taking a 3x3
region around b and convolving it with the 3x3 kernel of Formula 2 according to the Map parallelisation
of Figure 2.2.

4. Step. Compute Vertical Gradient: We notice that Formula 3 can be applied in parallel to every
single pixel b of B. We hence compute the vertical gradient Gy over all pixels b of B by taking a 3x3
region around b and convolving it with the 3x3 kernel of Formula 3 according to the Map parallelisation
of Figure 2.2.

5. Step. Combine Vertical Gradient and Horizontal Gradient: We notice that formula 5 can be
applied in parallel over all the pixels gx of Gx and gy of Gy to yield pixel g of G according to the Map
parallelisation of Figure 2.2.

6. Step. Convert gray file to PNG: The ’convert’ utility proceeds sequentially in the final phase of the
computation to convert the ’.gray’. file resulting from phase (5) into the final output PNG file.

2.3 Sequential Version - OpenCV
OpenCV is a library of programming functions aimed at real-time computer vision, available both in C++ and
Python. The OpenCV 3.2.0 C++ library was picked as a comparison baseline for the native-C Sobel Filter
implementation as its performance and behaviour resemble more closely the native C implementation rather
than the OpenCV Python library3.

The sequential OpenCV version of the Sobel filter proceeds analogously to the native C implementation of
the sequential version outlined in Section 2.1, in which lengthy native C code is replaced by more simple calls
to the OpenCV C++ API. For this reason, the amount of lines of code of the OpenCV version is very much
reduced w.r.t. the native C version.

3 Experimental Results
In this section, the experimental results obtained from running the Native C, GPU CUDA and OpenCV versions
of the Sobel Filter implementation are compared.

3.1 Anomalous cudaMalloc() behaviour
An anomalous behaviour was detected when running the CUDA version on the Geforce MX 150 on my laptop
and on the Geforce GTX 1080 of the bruciato server. As reported in Figure 3.1, the very first cudaMalloc()
executed in the CUDA program appears to take an extremely long time when compared to subsequent memory
operations and makes up for over 98% of time of all GPU memory operations. In fact, the CUDA environment
is initialized in conjunction with the first cudaMalloc() invoked.

Because of the anomalous behaviour reported, a ’dummy’ cudaMalloc(), responsible for allocating one single
byte, yet taking over 600 ms on bruciato and 100 ms on my laptop, was placed at the very beginning of the
program. The anomalous computation of this initial cudaMalloc() was not considered as part of the runtimes
reported in Section 3.2.

3.2 Experimental Data
In this section, the experimental data obtained from the experiments carried out on the hardware architectures
outlined in Table 1 is shown. In every single table, the average of 10 runs is calculated for every single runtime
reported. All times reported are in ms, milliseconds.

Input data: The same image was tiled repeatedly over the different resolutions considered during the
experiments carried out, as shown in Table 2.

3The OpenCV implementation is available at https://github.com/DanyEle/Sobel_Filter/tree/master/OpenCV_Sobel

5

https://github.com/DanyEle/Sobel_Filter/tree/master/OpenCV_Sobel

(a) Anomalous behaviour of the first cudaMalloc() on my local laptop

(b) Anomalous behaviour of the first cudaMalloc() on the bruciato server

Figure 6: Anomalous behaviour of the first cudaMalloc() on my local laptop and on the bruciato server.

3.2.1 Sequential Version - Native C

Tables 3, 4, 5 and 6 show the runtime obtained by running the native C implementation on the laptop, bruciato,
gewurztraminer and Raspberry PI 3 B+ hardware configuration, respectively, with the input image data of
Table 2. Figure 3.2.1 shows a pictorial representation of such runtimes.

The fields in Tables 3, 4, 5 and 6 are the following:

• I/O: encompasses the time spent reading the input image from the disk and writing the output image to
the disk

• Computation: encompasses the time spent during the rest of the program.

• Total: considers the sum of the two fields mentioned above.

3.2.2 GPU Version - CUDA

Tables 8 and 7 show the data obtained by running the CUDA implementation on the laptop and bruciato
hardware configurations with the input data of Table 2 and a CUDA synchronize statement after every kernel.
Figure 3.2.2 shows a pictorial representation of such runtimes.

The fields in Tables 8 and 7 are the following:

• GPUmemory movement: encompasses the time spent running cudaMalloc() operations, cudaMemCpy()
operations from device to host and from host to device and cudaFree() operations.

• GPU computation: encompasses the time spent in kernels on the GPU.

• I/O: encompasses the time spent reading the input image from the disk and writing the output image to
the disk.

• Total: considers the sum of the three fields mentioned above.

3.2.3 Sequential Version - OpenCV

Tables 9 and 10 show the data obtained by running the CUDA implementation on the laptop and raspberry
hardware configurations with the input data of Table 2. Figure 3.2.3 shows a pictorial representation of such
runtimes.

The fields in Tables 9 and 10 are the following:

• I/O: encompasses the time spent reading the input image from the disk and writing the output image to
the disk

• Computation: encompasses the time spent during the rest of the program.

• Total: considers the sum of the two fields mentioned above.

6

(a) I/O time of the native C program on my laptop, bruciato, gewurztraminer, Raspberry
PI 3 B+

(b) Computation time of the native C program on my laptop, bruciato, gewurztraminer,
Raspberry PI 3 B+

(c) Total time of the native C program on my laptop, bruciato, gewurztraminer, Raspberry
PI 3 B+ in log-log scale

Figure 7: I/O, Computation and total time of the native C program on my laptop, bruciato, gewurztraminer, Raspberry
PI 3 B+

7

Image’s
#Pixels

Image
Resolution Image

262144 512x512

524288 1024x512

1048576 1024x1024

2097152 2048x1024

Table 2: Input image considered for the 512x512, 1024x512, 1024x1024 and 2048x1024 image resolutions

#Pixels 262144 524288 1048576 2097152
Image Resolution 512x512 1024x512 1024x1024 2048x1024
I/O 90.1806 150.111 281.3179 638.868
Computation 38.353 62.2 116.2214 265.642
Total 128.5336 212.311 397.5393 904.51

Table 3: Experimental data resulting from running the native C implementation on the laptop hardware con-
figuration

#Pixels 262144 524288 1048576 2097152
Image Resolution 512x512 1024x512 1024x1024 2048x1024
I/O 221.3504 402.2781 774.4789 1494.8355
Computation 37.063 64.7642 125.7405 240.2341
Total 258.4134 467.0423 900.2194 1735.0696

Table 4: Experimental data resulting from running the native C implementation on the bruciato hardware
configuration

#Pixels 262144 524288 1048576 2097152
Image Resolution 512x512 1024x512 1024x1024 2048x1024
I/O 91.9068 167.17 325.4511 613.6729
Computation 40.4716 71.0934 138.9503 266.3467
Total 132.3784 238.2634 464.4014 880.0196

Table 5: Experimental data resulting from running the native C implementation on the gewurztraminer hard-
ware configuration

4 Discussion
In the present section, I am going to discuss the experimental results obtained in Section 3.2.

8

#Pixels 262144 524288 1048576 2097152
Image Resolution 512x512 1024x512 1024x1024 2048x1024
I/O 1313.0202 2193.6921 4520.5371 8426.9005
Computation 497.876 906.1778 1733.4482 3670.3458
Total 1810.8962 3099.8699 6253.9853 12097.2463

Table 6: Experimental data resulting from running the native C implementation on the Raspberry PI 3 B+
hardware configuration

#Pixels 262144 524288 1048576 2097152
Image Resolution 512x512 1024x512 1024x1024 2048x1024
GPU memory movement 1.5413 2.4112 4.5904 9.8378
GPU Computation 15.8482 31.4309 63.2679 144.1928
I/O 92.9807 150.1936 290.4326 645.1516
Total 110.3702 184.0357 358.2909 799.1822

Table 7: Experimental data resulting from running the CUDA implementation on the laptop hardware config-
uration

#Pixels 262144 524288 1048576 2097152
Image Resolution 512x512 1024x512 1024x1024 2048x1024
GPU memory movement 0.9956 1.6498 3.7508 6.8657
GPU Computation 14.924 29.8788 58.8453 113.1021
I/O 231.4684 409.4673 782.6594 1515.7717
Total 247.388 440.9959 845.2555 1635.7395

Table 8: Experimental data resulting from running the CUDA implementation on the bruciato hardware con-
figuration.

#Pixels 262144 524288 1048576 2097152
Image Resolution 512x512 1024x512 1024x1024 2048x1024
I/O 19.4348 25.2596 45.5474 68.78
Computation 73.6047 81.0963 85.2875 87.6996
Total 93.0395 106.3559 130.8349 156.4796

Table 9: Experimental data resulting from running the OpenCV implementation on the laptop hardware con-
figuration

#Pixels 262144 524288 1048576 2097152
Image Resolution 512x512 1024x512 1024x1024 2048x1024
I/O 169.3188 384.5017 583.6068 1384.1298
Computation 60.5518 135.6102 248.2017 460.0023
Total 229.8706 520.1119 831.8085 1844.1321

Table 10: Experimental data resulting from running the OpenCV implementation on the raspberry hardware
configuration

4.1 CUDA vs OpenCV vs Native C
After removing the anomalous behaviour outlined in Section 3.1, we notice from Figures 3.2.2, 3.2.1 that the
CUDA and native C’s computation time scales linearly with Npixels, the amount of pixels of the input image
considered. This behaviour applies to the I/O operations, the GPU memory movement, the GPU computation,
the CPU computation and the Total computation of the CUDA and Native C implementations. The behaviour
of these four metrics is hence modelled according to Formula 6.

Instead, from Figure 3.2.3 we notice that the computation time and the total of the OpenCV implemen-
tation do not scale linearly with Npixels on the laptop configuration. Instead, a quasi-linear scaling behaviour
for the computation and total time is present for the Raspberry PI configuration. Such poor scaling on the
laptop configuration is due to the underlying optimizations present in OpenCV algorithms being compiled for
general-purpose commodity hardware architectures (such as my laptop). As shown experimentally in Figure
3.2.3, no such optimizations seem to be present for ARM architecture (such as the Raspberry PI).

9

(a) GPU memory movement comparison of the CUDA program on my laptop vs
bruciato server

(b) GPU computation comparison of the CUDA program on my laptop vs bruciato
server

(c) I/O comparison of the CUDA program on my laptop vs bruciato server

TImage = Npixels ∗ TPixel (6)

where TImage is the time to process an input image (in ms), Npixels is the amount of pixels in the input
image and TPixel is the time to process one single pixel of the input image.

Worth discussing is also the I/O behaviour of bruciato in Figures 3.2.1 and 3.2.2, where bruciato is outper-

10

(d) Total time elapsed by the CUDA program on my laptop vs bruciato server

Figure 8: The GPU memory movement, GPU computation and I/O time and total time of the CUDA program on my
laptop vs bruciato server

formed by the laptop and gewurztraminer hardware configurations. In fach the bruciato hardware configuration
is equipped with a magnetic hard disk, whereas the laptop and the gewurztraminer hardware configurations are
both equipped with an SSD.

From Figure 3.2.3, we notice that the OpenCV version obtains an excellent Total performance on the
laptop configuration and even beats the CUDA implementation for the 2048x1024 resolution. Furthermore, the
OpenCV’s I/O runtime is significantly lower than the CUDA I/O for all input images considered. This behaviour
is due to the massive optimizations present in the OpenCV version, which make OpenCV a framework suitable
for real-time image processing, requiring a very low computational latency.

Finally, the Raspberry PI, unsurprisingly, is outperformed by the bruciato, gewurztraminer and laptop hard-
ware configurations for all metrics considered because of its low computational power, as outlined in Table
1.

4.1.1 Speedup Comparison and Limitations

By comparing the CUDA implementation with the native C implementation on the laptop hardware configura-
tion, we notice that the CUDA computation runtime on the laptop has a speedup of approximately 1.9x w.r.t.
the native C computation runtime.

Analogously, the CUDA GPU computation vs native C computation runtime on the bruciato server obtains a
speedup of approximately 2.3x. Therefore, the CUDA implementation does benefit from a faster GPU: this fact
shows experimentally that the CUDA implementation’s performance scales when running on faster hardware.

Such results show that the CUDA implementation was successfully parallelised. The report writer suggests
that, if the arithmetic intensity of the CUDA kernels were higher, the speedup obtained would be higher as
well.

Finally, if all Npixels of the input image could be fed immediately to Nthreads CUDA threads (assuming
Npixels = Nthreads) of the GPU and could be processed in parallel, we would obtain a speedup equal to Npixels.
This would only be possible if Nthreads threads operated in parallel over Npixels and no time were spent in
the kernel for scheduling and moving data over the CPU-GPU bus. However, this Nthreads speedup scenario is
not realistic in a real-world GPU computation scenario, because of the hardware characteristics of the GPUs
considered in Table 1. Namely, the speedup is limited by the fact that the GPU architecture of general purpose
GPUs (such as the MX150 and GTX1080 GPUs) are heavily optimized for streaming operations, thanks to
their small caches and their high on-chip ALU/memory ratio [1].

4.2 n:1 pixels per thread Version
In the CUDA implementation described in Section 2.2, I assigned one CUDA thread to each pixel of the input
image. From now onwards, such implementation will be called the "1:1" implementation. In the present section,
I would like to validate such design decision by comparing the performance of the 1:1 implementation with an
implementation where n pixels of the input image are assigned to one thread (n : 1 implementation from now
onwards).

The n : 1 version was implemented by passing multiple pixels to one single thread and iterating over these
pixels within one CUDA kernel. Alternatively, the report writer also considered an implementation where

11

(a) I/O time of the OpenCV program on my laptop vs the Raspberry PI 3 B+ in
log-log scale.

(b) Computation time of the OpenCV program on my laptop vs the Raspberry PI 3
B+ in log-log scale.

(c) Total time of the OpenCV program on my laptop vs the Raspberry PI 3 B+ in
log-log scale.

Figure 9: I/O, Computation and total time of the OpenCV program on my laptop and the Raspberry PI 3 B+

multiple statements were laid out over n pixels in a sequential manner, with no for loops. However, both

12

(a) GPU computation time of the CUDA implementation on my laptop for 1, 2, 4,
8, 16, 32, 64 pixels per thread.

(b) GPU memory movement time of the CUDA implementation on my laptop for 1,
2, 4, 8, 16, 32, 64 pixels per thread.

(c) I/O time of the CUDA implementation on my laptop for 1, 2, 4, 8, 16, 32, 64
pixels per thread.

implementations resulted equivalent from a functional and a performance point of view. The report writer
hence suggests that most likely a loop unrolling optimization is carried out by the nvcc compiler for CUDA
kernels’ code and that the penalty due to jump instructions in the loop is minimal. This hypothesis is backed
experimentally by the increased GPU computation time shown in Tables 11, 12, 13, 13, 14 and theoretically by

13

(d) Total time of the CUDA implementation on my laptop for 1, 2, 4, 8, 16, 32, 64
pixels per thread.

Figure 10: I/O, Computation and total time of the OpenCV program on my laptop and the Raspberry PI 3 B+

the fact that loop branches are very inefficient in GPU threads, as they break a processor’s fetch-decode-execute
pipeline [1].

Figures 10b, 10c, 10a and 10d plot the GPU memory movement, I/O time, GPU computation time and
Total time, respectively for n ∈ [1, 2, 4, 8, 16, 32, 64] (the amount of pixels per thread) and Npixels ∈ [512 ∗
512, 1024 ∗ 512, 1024 ∗ 1024, 2048 ∗ 1024] (the amount of pixels in the input images).

4.2.1 Performance Model

Figures 10b and 10c suggest that the amount of pixels per thread (n) has little to no impact as far as the GPU
memory movement time and the I/O time are concerned. Namely, no matter which value of n is picked, the
GPU memory movement and the I/O time will change by a minimum amount.

Figure 10a shows that by increasing n, the amount of pixels per thread, the GPU computation time increases
quasi-linearly for n = 8, 16, 32, 64, whereas the computation time is very similar for n = 1, 2, 4. By increasing the
resolution of the input images, and hence the amount of pixels Npixels contained therein, the GPU computation
time also appears to be scaling quasi-linearly.

Based on these observations, I propose the model of Formula 7 for the GPU computation time in the n : 1
case. Formula 7 appears to be pretty well fitting the GPU computation time’s behaviour shown in Figure 10a
for n >= 8.

TGPU = n ∗ Tpixel ∗Npixels (7)

where n ∈ [8, 16, 32, 64] is the amount of pixels per thread, Tpixel is the time required to perform the GPU
computation for one pixel of the input image, Npixels ∈ [512 ∗ 512, 1024 ∗ 512, 1024 ∗ 1024, 2048 ∗ 1024] is the
amount of pixels in the input images considered and TGPU is the computation time of the GPU during the
processing of each input image.

Formula 7 implies that by increasing n, we obtain a directly proportional linear increase in TGPU . Analo-
gously, by increasing Npixels we obtain a directly proportional linear increase in TGPU .

The linear scaling behaviour highlighted in the Total computation time of Figure 10d is a direct consequence
of the linear scaling behaviour of the GPU computation time shown in Figure 10a.

4.3 Performance Comparison of n:1 pixels per thread vs 1:1 pixels per thread
Tables 11, 12 13, 14 show the GPU memory movement, GPU computation, I/O time and Total time respectively
for Npixels ∈ [512 ∗ 512, 1024 ∗ 512, 1024 ∗ 1024, 2048 ∗ 1024] and n ∈ [1, 2, 4, 8, 16, 32, 64] for the n : 1 pixels
per thread (p.t.) implementation. The Relative Speedup is defined as: Tn:1

GPU (1)

Tn:1
GPU (n)

, where Tn:1
GPU (1) is the GPU

computation time of the n : 1 implementation with 1 pixel per thread and Tn:1
GPU (n) is the GPU computation

time of the n : 1 implementation with n pixels per thread.
From Tables 11, 12 13, 14, it is remarkable to notice that the relative speedup decreases by increasing n,

with the exception of the n = 2, n = 4 case for Npixels = 1024 ∗ 512 and n = 2 for Npixels = 2048 ∗ 1024. Such
exceptions are most likely justified by an efficient usage of GPU caches for the values of n considered.

14

512x512
#Pixels per Thread 1 p.t. 2 p.t. 4 p.t. 8 p.t. 16 p.t. 32 p.t. 64 p.t.
GPU memory movement 1.5552 1.5412 1.6248 1.8299 1.5576 1.5215 2.4168
GPU Computation 91.4494 93.4583 100.5723 110.7912 136.6889 163.7567 264.4777
I/O 95.1918 100.0423 93.3787 101.2149 96.4165 92.5592 116.2303
Total 188.1964 195.0418 195.5758 213.836 234.663 257.8374 383.1248
Relative Speedup 1 0.98 0.93 0.91 0.81 0.83 0.62

Table 11: GPU memory movement, GPU computation, I/O, Total runtimes and Relative Speed for the 512x512
input image on the laptop hardware configuration for the n : 1 CUDA implementation

1024x512
#Pixels per Thread 1 p.t. 2 p.t. 4 p.t. 8 p.t. 16 p.t. 32 p.t. 64 p.t.
GPU memory movement 2.6459 2.4389 2.4953 2.7343 2.4689 2.563 2.7396
GPU Computation 208.9538 169.1638 183.7097 225.108 251.4933 338.2722 491.5858
I/O 200.75 154.0919 160.9823 190.0286 173.6954 185.2298 182.9089
Total 412.3497 325.6946 347.1873 417.8709 427.6576 526.065 677.2343
Relative Speedup 1 1.24 1.14 0.93 0.83 0.62 0.43

Table 12: GPU memory movement, GPU computation, I/O, Total runtimes and Relative Speed for the 1024x512
input image on the laptop hardware configuration for the n : 1 CUDA implementation

1024x1024
#Pixels per Thread 1 p.t. 2 p.t. 4 p.t. 8 p.t. 16 p.t. 32 p.t. 64 p.t.
GPU memory movement 5.5768 6.2221 5.311 5.8691 5.5045 5.4143 5.6543
GPU Computation 427.8063 433.0888 433.1126 466.0709 563.8854 713.2571 1022.0434
I/O 407.4501 410.821 378.8298 385.8779 400.5517 393.1969 392.8111
Total 850.8332 850.1319 817.2534 857.8179 969.9416 1111.8683 1420.5088
Relative Speedup 1 0.99 0.99 0.93 0.77 0.65 0.55

Table 13: GPU memory movement, GPU computation, I/O, Total runtimes and Relative Speed for the
1024x1024 input image on the laptop hardware configuration for the n : 1 CUDA implementation

2048x1024
#Pixels per Thread 1 p.t. 2 p.t. 4 p.t. 8 p.t. 16 p.t. 32 p.t. 64 p.t.
GPU memory movement 10.5396 9.6879 9.9469 9.965 9.7461 9.8072 10.6299
GPU Computation 817.3744 798.4245 848.9382 949.0839 1071.9428 1407.4057 2089.8141
I/O 761.4638 729.7934 736.4157 747.8666 731.9428 746.7296 816.379
Total 1589.3778 1537.9058 1595.3008 1706.9155 1813.3124 2163.9425 2916.823
Relative Speedup 1 1.02 0.96 0.86 0.76 0.57 0.41

Table 14: GPU memory movement, GPU computation, I/O, Total runtimes and Relative Speed for the
2048x1024 input image on the laptop hardware configuration for the n : 1 CUDA implementation

• GPU Memory movement: Comparing the GPU memory movement of the 1 : 1 implementation with
the GPU memory movement of the n : 1 implementation, we do not notice substantial differences among
the runtimes obtained for these two implementations. In fact, the GPU memory movement does not vary
proportionally over the n considered and is simply directly proportional to Npixels, the amount of pixels
moved over the bus (which stays the same both for the 1 : 1 and n : 1 implementation.

• I/O: Similarly to what occurs in the GPU memory movement, we do not notice substantial differences
in I/O time. In fact, the I/O time is directly proportional to Npixels and does not change as a function
of n for the n : 1 implementation. Instead, the amount of I/O operations performed is just a function of
Npixels.

• GPU Computation: If we compare the GPU computation time of the n : 1 implementation with the
GPU computation time of the 1 : 1 implementation, we do notice some differences. In Section 4.2.1, we
noticed that TGPU , the GPU computation time varied as a function of n, scaled by a constant S.

For this reason, the more n is increased, the slower the GPU computation with n pixels and the higher
the performance speedup of the 1 : 1 version vs the n : 1 version.

15

1:1 vs n:1 Absolutel Speedup
Resolution 1 p.t. 2 p.t. 4 p.t. 8 p.t. 16 p.t. 32 p.t. 64 p.t.
512x512 0.173 0.169 0.158 0.143 0.116 0.097 0.06
1024x512 0.15 0.186 0.171 0.14 0.125 0.093 0.063
1024x1024 0.147 0.146 0.146 0.136 0.112 0.089 0.061
2048x1024 0.176 0.18 0.17 0.152 0.135 0.1 0.69

Table 15: 1:1 vs n:1 Absolute Speedup for n ∈ [1, 2, 4, 8, 16, 32, 64] and Npixels ∈ [512 ∗ 512, 1024 ∗ 512, 1024 ∗
1024, 2048 ∗ 1024] for the GPU computation time TGPU .

Table 15 shows how many times the 1 : 1 version computation is faster than the n : 1 version computation

time. The Absolute Speedup is computed as:
T 1:1
GPU

Tn:1
GPU

, where Tn:1
GPU is the GPU computation time of

the n : 1 pixels’ mapping to threads version and T 1:1
GPU is the GPU computation time of the 1 : 1 pixels’

mapping to threads version. Table 15 reports a sub-linear speeup trend for n, as the speedup increases
substantially when considering n >= 4.

• Total: The Total time is influenced by the GPU computation time, which is proportional to n for the
n : 1 Threads per Pixel version. Hence, the same conclusions as those drawn for the GPU computation
time can be drawn.

The experimental results of Table 15 show that assigning one pixel per thread is experimentally more efficient
than assigning n pixels per thread and that increasing the n values leads to a further decrease in the performance
of the n : 1 version. This trend repeats for all Npixels considered.

Given the observations brought forward in the present section, we can conclude that the n : 1 Threads per
Pixel version is from 0.06x up to 0.186x times slower than the 1 : 1 Threads per Pixel version, which outperforms
the n : 1 implementation for all values of n and Npixels considered.

4.4 Map Fusion Optimization
Figure shows the architecture of the 1 : 1 GPU Map parallelization, as described in 4.2.1.

𝑮𝟎

𝑮𝑵−𝟏

Scatter

.

.

.

Gather

2. RGB to Gray-Scale Kernel 3. Horizontal Gradient Kernel

𝑯𝟎

𝑯𝑵−𝟏

Scatter

.

.

.

Gather

𝑽𝟎

𝑽𝑵−𝟏

Scatter

.

.

.

Gather

4. Vertical Gradient Kernel

𝑪𝟎

𝑪𝑵−𝟏

Scatter

.

.

.

Gather

5. Countour Kernel 6. Gray file to PNG

Gray

to

PNG

1. JPG/PNG/GIF to RGB

PNG

To

RGB

Figure 11: GPU Map parallelization adopted for the 1 : 1 version, as described in 4.2.1

Based on Figure 4.4 and inspecting the kernel code of the horizontal and vertical gradient computation
code, we noticed that the horizontal and vertical gradient kernels accessed the same memory areas, whereas the
countour kernel just accessed the resulting pixels of the horizontal and vertical gradient computations.

Consequently, a Map Fusion optimization was carried out and implemented, in which the three separate
kernels of the horizontal, vertical gradient computation, as well as the countour image computation were merged
into one single kernel, as shown in Figure 4.4.

4.4.1 1:1 vs Map Fusion Experimental Comparison

Figures 13a, 13c, 13b, 13d respectively show a comparison of the 1 : 1 vs the Map Fusion implementation for
the I/O time, the GPU memory movement, the GPU computation time and the total time.

From Figure 13c, we notice that the Map Fusion optimization carried out has a strong impact on the GPU
memory movement: as Npixels increases, so does the impact of this optimization increase. However, because
the GPU memory movement time’s magnitude is small w.r.t. the GPU computation time, this reduction in
GPU memory movement time does not reflect on the total computation time, which still appears to be similar
to the 1 : 1 total computation time. On the other hand, the GPU computation time is almost unchanged

16

𝑮𝟎

𝑮𝑵−𝟏

Scatter

.

.

.

Gather

2. RGB to Gray-Scale Kernel 3,4,5: Vertical, Horizontal Gradient and Countour

Kernel

𝑯𝟎

𝑯𝑵−𝟏

Scatter

𝑽𝟎

𝑽𝑵−𝟏

𝑪𝟎

𝑪𝑵−𝟏

6. Gray file to PNG

Gray

to

PNG

1. JPG/PNG/GIF to RGB

PNG

To

RGB

.

.

.

.

.

.

.

.

.

Gather

Figure 12: Map Fusion Optimization adopted for the 1 : 1 version

because the arithmetic operations carried out in the kernels are still the same, even following the Map Fusion
optimization. The same reasoning applies to I/O operations, which are still the same following the Map Fusion
optimization.

5 Instructions
This section contains instructions to install, compile and run the native C, OpenCV, CUDA 1 : 1 pixels’ mapping
to threads and n : 1 pixels’ mapping to threads for the Sobel Filter.

5.1 Dependencies
The ’convert’ utility from the ’imagemagick’ package is required for converting input PNG/JPG/GIF images to
the RGB format, an encoding-independent format taken as input by all three implementations. Accepted input
image formats are PNG, JPG and GIF .

To install the ’imagemagick’ package in Linux, run:

sudo apt -get install imagemagick

To install the ’imagemagick’ package on a MAC, run:

brew install imagemagick

5.2 Clone the repository
Just run the following commands to clone the repository

cd $HOME
git clone https :// github.com/DanyEle/Sobel_Filter.git

5.3 Native C Version
In order to run the native C version, make sure you have the gcc compiler installed. We will now proceed to
compile the project files and perform one run of the Sobel Filter with an input image.

cd $HOME
cd Sobel_Filter/Native_Sobel
./ compile.sh
./Debug/Native_Sobel imgs_in /512 x512.png

The 512x512.png image can be replaced by any other image (e.g.: 1024x512.png, 1024x1024.png, 2048x1024.png).
The resulting output lies in the Sobel_Filter/Native_Sobel/imgs_out/ folder.

If you would like to execute 10 runs of the native C Sobel Filter with a certain input image, then just run:

./ run_experiments.sh <input_image >

17

(a) I/O time of the 1 : 1 version vs the map-fusion version on the laptop hardware
configuration

(b) GPU computation time of the 1 : 1 version vs the map-fusion version on the
laptop hardware configuration

(c) GPU memory movement time of the 1 : 1 version vs the map-fusion version on
the laptop hardware configuration

5.4 OpenCV Version
In order to run the OpenCV version, make sure you have the g++ compiler and OpenCV installed. To quickly
install OpenCV in Linux:

sudo apt -get install libopencv -dev

Now, to compile and run the OpenCV version, execute the following commands:

18

(d) Total time of the 1 : 1 version vs the map-fusion version on the laptop hardware
configuration

cd $HOME
cd Sobel_Filter/OpenCV_Sobel
./ compile.sh
./Debug/OpenCV_Sobel imgs_in /512 x512.png

The output lies in the Sobel_Filter/OpenCV_Sobel/imgs_out/ folder.
If you would like to execute 10 runs of the OpenCV Sobel Filter with a certain input image, then just run:

./ run_experiments.sh <input_image >

5.5 CUDA Version - 1:1 pixels’ mapping to threads
In order to run the CUDA version, make sure you have a CUDA-compatible GPU and its corresponding CUDA
drivers, as well as the nvidia-cuda-toolkit to compile CUDA programs. To quickly install the NVIDIA-CUDA-
Toolkit on Linux, just run:

sudo apt -get install nvidia -cuda -toolkit

Now, to compile and run the CUDA implementation, execute the following commands:

cd $HOME
cd Sobel_Filter/CUDA_Sobel
./ compile.sh
./Debug/CUDA_Sobel imgs_in /512 x512.png

The output lies in the Sobel_Filter/CUDA_Sobel/imgs_out/ folder.
If you would like to execute 10 runs of the CUDA Sobel Filter with a certain input image, then just run:

./ run_experiments.sh <input_image >

5.6 CUDA version - n:1 pixels’ mapping to threads
In order to run the CUDA version using multiple pixels per thread, just follow the instructions for setting up
the plain CUDA version as by Section 5.5 and run the following commands:

cd $HOME
cd Sobel_Filter/CUDA_Sobel_Block
./ compile.sh
./Debug/CUDA_Sobel imgs_in /512 x512.png 2

The output lies in the Sobel_Filter/CUDA_Sobel_Block/imgs_out/ folder. If you would like to execute 10
runs of the CUDA Sobel Filter with a certain input image and a certain amount of pixels per thread, then just
run:

./ run_experiments.sh <input_image > <amount_of_pixels_per_thread >

19

5.7 CUDA version - Map Fusion
In order to run the CUDA version optimized by Kernels’ map fusion, just follow the instructions for setting up
the plain CUDA version as by Section 5.5 and run the following commands:

cd $HOME
cd Sobel_Filter/CUDA_Map_Fusion
./ compile.sh
./Debug/CUDA_Sobel imgs_in /512 x512.png 2

The output lies in the Sobel_Filter/CUDA_Sobel_Fusion/imgs_out/ folder. If you would like to execute 10
runs of the CUDA Sobel Filter with a certain input image and a certain amount of pixels per thread, then just
run:

./ run_experiments.sh <input_image >

References
[1] Massimo Coppola. Intro to GPGPU - General Purpose GPU programming. Programming Tools for Parallel

and Distributed Systems, University of Pisa, 2019.

[2] Daniele Gadler. A Review of Object Classification Methods for Pedestrian Detection in Autonomous Ve-
hicles. Seminar for Computer Graphics and Embedded Systems. Technische Universitaet Kaiserslautern,
Germany, 2017.

[3] Jason Sanders and Edward Kandrot. CUDA by Example: An Introduction to General-Purpose GPU Pro-
gramming, Portable Documents. Addison-Wesley Professional, 2010.

20

	Algorithm Introduction
	Algorithm Description

	Implementation
	Sequential Version - Native C
	GPU Version - CUDA
	Sequential Version - OpenCV

	Experimental Results
	Anomalous cudaMalloc() behaviour
	Experimental Data
	Sequential Version - Native C
	GPU Version - CUDA
	Sequential Version - OpenCV

	Discussion
	CUDA vs OpenCV vs Native C
	Speedup Comparison and Limitations

	n:1 pixels per thread Version
	Performance Model

	Performance Comparison of n:1 pixels per thread vs 1:1 pixels per thread
	Map Fusion Optimization
	1:1 vs Map Fusion Experimental Comparison

	Instructions
	Dependencies
	Clone the repository
	Native C Version
	OpenCV Version
	CUDA Version - 1:1 pixels' mapping to threads
	CUDA version - n:1 pixels' mapping to threads
	CUDA version - Map Fusion

