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Abstract

In the context of banking data analysis, it is crucial to distinguish trustworthy customers that do
pay their debts on time from the untrustworthy ones that delay their payments and eventually end
up defaulting. Our aim was to provide a tool that would allow us to carry out such distinction on a
dataset of Taiwanese credit card holders over a time period spanning from April 2005 to September
2005.

In our analysis, we were confronted with many problems, mainly: the time limitedness of the
data, data unbalancing, the presence of missing values and semantic issues. After correcting the
missing values and trying to solve the semantic issues, we applied three data mining techniques:
clustering, classification and pattern mining.

In an initial data understanding part, we realized that the dataset had serious semantic coherence
issues that hindered all the techniques used in our experiments; these techniques included traditional
approaches as well as some innovative approaches (e.g. Deep Learning, 10-Fold dataset sub-division).

The claim of this report is that such dataset is not sufficiently accurate to distinguish defaulting
customers from non-defaulting customers beyond the metrics and the results presented.
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1 Data understanding

1.1 Data semantics
The dataset contains information on the credit cards of 10,000 different customers of a Taiwanese bank.
For each user, the following information is known:

Limit: Numerical attribute that establishes the monthly credit amount granted by the bank to the
customer;

Sex: Categorical attribute representing the customer’s gender;

Education: Ordinal attribute that defines the customer’s education.

Status: Categorical attribute that defines the customers’s civil status;

Age: Numerical attribute representing the customer’s age;

Psm: Payment Status for the April, May, June, July, August, September months. Numerical attribute
that defines the state of payment of the customer’s expenses. The possible values for each one of
the six ‘ps’ columns with index m are:

psm =


−2 if no credit consumption
−1 if consumption with same-month payment
0 if use of the revolving credit made available by the bank
≥ 1 amount of months by which the payment was delayed

(1)

Bam: Billing Amount for the April, May, June, July, August, September months. Numerical attribute
that defines the total bill statement of a customer.

bam =


> 0 if the customer paid less than its bam−1

< 0 if the customer paid more than its bam−1

= 0 if no consumption
(2)

Pam : Payment Amount. Numerical attribute defining how much was paid in the m− 1 month. It only
admits positive values.

Credit default : categorical attribute and target variable to be predicted. “Yes / No” value indicating
respectively whether the customer has had a default or has not had a default.

1.1.1 Semantic analysis formulation

We checked whether all the values of a specific attribute do belong to the domain of the considered
attribute and identified semantic errors for the age and ps attributes. For the age attribute, we have
found the value ‘-1’ and we will deal with it as a missing value in Section 1.2, while for the ps attribute
we have laid out four different correction rules:

Rule 1: If pam >bam−1 the customer has paid more than the due amount. In this situation, the psm−1
ought to be -1. The error percentage, namely not respecting this rule, is 22.80%.

Rule 2: If ba ≤ 0 and it is equivalent to the difference between the previous ba and the corresponding
sum paid, then we expect a ps = -2 (no consumption). The error percentage, namely not respecting
this rule, is 32.92%.

Rule 3: If psm ≥ 0 (indicating a postponement of the payment), then it is expected that the
bam+1 ≥bam−pam+1. The error percentage, namely not respecting this rule, is 2.25%.
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Attribute Name Issue type Amount of values
sex missing values, ‘NaN’ 100
education missing values, ‘NaN’ 127
status missing values, ‘NaN’ 1822
age invalid values, ‘-1’ 951

Table 1: Type and amount of missing and invalid values for the attributes containing missing and invalid values

1.2 Data quality
After careful analysis of the amount of missing values reported in Table 1, we decide to correct missing
values in an attribute-by-attribute manner in the following order:

1. Sex: All the 100 ‘NaN’ values of the sex attribute are replaced by the mode of the sex attribute,
as it is a categorical attribute.

2. Education: All the 127 ‘NaN’ values of the education attribute are replaced by the ‘other’ value,
as we do not have any further information that could help us infer the education level of the
considered customer.

3. Status: All the 1822 ‘NaN’ values of the status attribute are replaced by the mode based both
on the sex and education attributes. To do this, this we have grouped the rows by sex and
education, then we have picked the group-wise mode of status attribute, as it is a categorical
attribute.

4. Age: All the 951 values of the age attribute having a ‘-1’ value are replaced by the median of
the age attribute, taken group-wise over the sex, education and status attributes. As Figure 1
shows, this approach results in a more uniform dataset modification with respect to the usage of
the group-wise median of the age taken over the sex and education attributes or the sex and
status attributes, shown in Figure 1

Figure 2 shows the Quantile-Quantile (QQ) Plot of the age attribute. In particular, Figure 2 shows
the QQ Plot of the age attribute before and after the correction operation is applied. We notice
that the distribution of the age attribute follows a more normal distribution after the four correction
operations have been applied to the sex, education, status and age attributes.
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Figure 1: On the left-hand side, the age histogram where “-1” values are substituted by the age median of
rows grouped by sex, education and status attributes. On the right-hand side, an age histogram, where “-1”
values are substituted with the age median of rows grouped by sex, education and status attributes. Bars in blue
represent the values’ frequency before correction; bars in red represent values’ frequency after correcting “-1”
values.

1.2.1 Outliers’ analysis

In the next few paragraphs, we discuss the adopted methodology for the identification of outlier data
points. Only non-categorical attributes are considered as candidates for having outliers.

The first approach pursued for the outlier detection and removal phase was an algebraic one, but it
did not produce satisfactory results; therefore, we followed a visual inspection approach.

For what concerns the Age and Limit attributes, we notice that it is perfectly reasonable that there
exist fewer old customers w.r.t young customers, because it is expected that fewer old people use credit
cards with respect to young people. Likewise, it is equally acceptable that there exist only few customers
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Figure 2: On the left-hand side, Initial QQ plot of the age attribute, also containing “-1” values. On the
right-hand side, the QQ Plot of the age attribute after “-1” values’ correction.

that have a very high limit at their disposal. For this reason we did not identify any outlier in the Age
and Limit attributes.

The outliers were identified in the bam and pam attributes by means of a visual analysis of their
boxplots. From Figure 3 and Figure 4, we argue that the dots below the lower whisker are outliers
because they are extremely few and could potentially skew the dataset, hence the corresponding rows
were dropped from the dataset. As a result of the ouliers’ removal process we dropped 30 rows from the
dataset, which now has 9970 rows.
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Figure 3: On the left-hand side, a boxplot of all ba columns over the data before outliers’ removal. On the
right-hand side, a box plot of all ba columns after outliers’ removal. We identified 16 outliers in ba-may and 18
outliers in ba-apr.

pa-apr pa-may pa-jun pa-jul pa-aug pa-sep

0

200000

400000

600000

800000

1000000

1200000

pa-apr pa-may pa-jun pa-jul pa-aug pa-sep

0

100000

200000

300000

400000

Figure 4: On the left-hand side, a boxplot of all pa columns over the data before outliers’ removal. On the
right-hand side, a box plot of all pa columns after outliers’ removal. We identified 2 outliers in pa-aug, 1 outlier
in pa-may and in pa-apr.

1.3 Distribution of the variables and statistics
Before delving into the details of the attributes’ distribution, we analyze the mean values (µ) and the
standard deviation (σ) of the numerical attributes of the dataset, see Table 2. Namely, we notice that
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count mean std min 25% 50% 75% max
limit 9970 167197.000000 128975.488596 10000.000000 50000.000000 140000.000000 240000.000000 780000.000000
age 9970 35.276400 8.911445 21.000000 28.000000 34.000000 41.000000 75.000000
ba-sep 9970 51490.704100 73740.383345 -14386.000000 3545.250000 22246.000000 67681.000000 613860.000000
ba-aug 9970 49239.438400 70777.470286 -69777.000000 2899.250000 21202.000000 64412.750000 605943.000000
ba-jul 9970 46957.46680 68948.62697 -61506.00000 2442.50000 19905.50000 60164.75000 597415.00000
ba-jun 9970 43306.114300 64519.910263 -24303.000000 2203.250000 19072.000000 54093.750000 616836.000000
ba-may 9970 40182.130200 60732.330157 -81334.000000 1650.000000 18071.000000 49906.500000 587067.000000
ba-apr 9970 38621.582700 59325.339137 -209051.000000 1150.000000 16977.000000 48680.750000 568638.000000
pa-sep 9970 5651.344900 15835.839092 0.000000 997.000000 2081.500000 5019.000000 493358.000000
pa-aug 9970 5973.676 22511.75 0.00000 780.0000 2000.000 5000.000 12270822
pa-jul 9970 5131.898600 15416.402957 0.000000 390.000000 1800.000000 4500.000000 417588.000000
pa-jun 9970 4719.769200 14483.407778 0.000000 261.500000 1500.000000 4000.000000 292962.000000
pa-may 9970 4734.702900 14912.375475 0.000000 200.000000 1500.000000 4000.000000 417990.000000
pa-apr 9970 5480.147400 19361.411204 0.000000 100.000000 1500.000000 4000.000000 528666.000000

Table 2: Basic statistics of the numerical attributes of the customer credit card dataset

the σ(bam) is approximately three times as much as the σ(pam), signifying that the bam has a wider tail
distribution.

We notice that defaulting customers are mostly concentrated in the 20−40 age range, peaking in the
30 years of age, as we can see from Figure 5 however, this attribute does not appear to be important for
distuinguishing defaulting from non-defaulting customers. Likewise for the categorical attributes in the
dataset (education, status, sex) we notice that these attributes do not suggest a relevant substantial
differing behaviour between defaulting and non-defaulting customers, as the sample flot of Figure 5 shows.
The only exception is represented by the “others” value in the Education plot, which could suggest that
“others” customers are more likely to default. However, the “others” group is underrepresented in the
dataset (accounting for less than 1% of all rows) and can be neglected.

We also observe that customers with a low limit (in the range [100000, 200000]), tend to have more
defaults compared to customers with a higher limit, as by Figure 6. Customers with a very high limit
also tend to have many defaults, however the amount of customers with a very high limit is negligible.

From the left-hand side of Figure 6, we can see that the higher the ps, the higher is the probability
of a default to occur. This behaviour is typical of all the psm attributes in the considered dataset. Also,
a psm value close to 0, or < 0 is a strong indication that a customer is not going to default. On the
other hand, a positive value of the psm suggests that the customer is more likely to default. Moreover,
observing the Figure 6 we noticed that the peak of the ps frequency distribution of ’yes’ and ’no’ is close
to zero.
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Figure 5: On the left, a crosstab of the credit default over the education attribute. On the right, a plot of
the distribution of the age attribute with respect to the credit default.

2 Clustering
In this section, we describe the Clustering algorithms used to group customers into clusters to characterize
customers based on their characteristics and especially based on their propensity to default.
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Figure 6: On the left, the distribution of the limit attribute with respect to the credit default. On the right,
the distribution of ps attribute with respect to the credit default.

2.1 Pairwise correlation and data transformation
From table Figure 7, we observe that the pam attributes are not strongly correlated with one another,
whereas the bam attributes are very strongly correlated and represent redundant variables. Conse-
quently, we put together the bam attributes into one single attribute, called ba, which is the mean of all
bam attributes.

Also, we put together the pam into one single attribute called pa, which is again the mean of all pam

attributes. Despite the pam not being redundant variables, we still operated this transformation so as
to reduce the dataset dimensionality.

limit ba-sep ba-aug ba-jul ba-jun ba-may ba-apr pa-sep pa-aug pa-jul pa-jun pa-may pa-apr ba pa ps

limit
ba-sep
ba-aug

ba-jul
ba-jun

ba-may
ba-apr
pa-sep
pa-aug

pa-jul
pa-jun

pa-may
pa-apr

ba
pa
ps

1 0.3 0.29 0.29 0.3 0.3 0.29 0.21 0.21 0.22 0.21 0.23 0.22 0.31 0.39 -0.23
0.3 1 0.95 0.91 0.86 0.83 0.81 0.15 0.14 0.14 0.16 0.19 0.2 0.94 0.29 -0.03
0.29 0.95 1 0.94 0.9 0.87 0.84 0.28 0.11 0.13 0.15 0.18 0.18 0.96 0.31 -0.015
0.29 0.91 0.94 1 0.94 0.9 0.86 0.25 0.31 0.14 0.14 0.17 0.19 0.97 0.36 -0.0026
0.3 0.86 0.9 0.94 1 0.94 0.9 0.25 0.26 0.31 0.13 0.18 0.19 0.97 0.39 0.013
0.3 0.83 0.87 0.9 0.94 1 0.95 0.23 0.22 0.24 0.29 0.16 0.17 0.95 0.39 0.028
0.29 0.81 0.84 0.86 0.9 0.95 1 0.22 0.18 0.21 0.26 0.32 0.13 0.93 0.38 0.031
0.21 0.15 0.28 0.25 0.25 0.23 0.22 1 0.19 0.24 0.17 0.2 0.16 0.24 0.57 -0.09
0.21 0.14 0.11 0.31 0.26 0.22 0.18 0.19 1 0.18 0.12 0.13 0.16 0.21 0.56 -0.082
0.22 0.14 0.13 0.14 0.31 0.24 0.21 0.24 0.18 1 0.19 0.2 0.18 0.2 0.59 -0.079
0.21 0.16 0.15 0.14 0.13 0.29 0.26 0.17 0.12 0.19 1 0.17 0.14 0.19 0.52 -0.075
0.23 0.19 0.18 0.17 0.18 0.16 0.32 0.2 0.13 0.2 0.17 1 0.17 0.21 0.53 -0.078
0.22 0.2 0.18 0.19 0.19 0.17 0.13 0.16 0.16 0.18 0.14 0.17 1 0.19 0.58 -0.063
0.31 0.94 0.96 0.97 0.97 0.95 0.93 0.24 0.21 0.2 0.19 0.21 0.19 1 0.37 0.0025
0.39 0.29 0.31 0.36 0.39 0.39 0.38 0.57 0.56 0.59 0.52 0.53 0.58 0.37 1 -0.14
-0.23 -0.03 -0.015 -0.0026 0.013 0.028 0.031 -0.09 -0.082 -0.079 -0.075 -0.078 -0.063 0.0025 -0.14 1
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Figure 7: Correlation matrix computed on all numerical attributes in the dataset under study

We acknowledge the fact that the psm attributes are categorical for all months considered in the
dataset. Also, the psm features both positive and negative integer values; consequently, we transform
the ‘-2’ and ‘-1’ values into 0 to make the psm assume positive values only in the range [0, 8]. We operate
this transformation as the ‘-2’ and ‘-1’ values represent a situation where the customer has not had any
credit consumption (‘-2’ value), or the payment of a month’s consumption has been made in that same
month (‘-1’ value). We compromise losing these pieces of further information with the possibility of using
the ps for clustering.

This transformation of the bam, pam, pam attributes produced good results in the clustering and
association rules mining techniques.

As far as classification algorithms are concerned, we convert the ordinal attribute education, and
the categorical attributes credit default, sex and status into numerical attributes.

2.2 Distance functions
In the DB-Scan and in the hierarchical clustering algorithms, we made use of the Euclidean and Manhat-
tan distance as the attributes considered for these two approaches are numerical, as described respectively
in Section 2.6.1 and Section 2.5.1.
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For the K-Means algorithm, instead, we only used the Euclidean distance because the attributes
selected for K-Means are numerical and the K-Means algorithm of the scikit-learn library ∗ did not allow
to change the distance function.

2.3 Procedure for Clustering Algorithms
In the K-Means, hierarchical clustering and DB-Scan algorithms, we followed the following procedure to
build clusterings:

1. Select the respective distance function(s) laid out in Section 2.2.
2. Select some sets of attributes onto which to run the clustering algorithms.
3. Identify adequate parameters (e.g: k in case of the k-means algorithm, minPoints and ε in case of

DB-Scan, numClusters in hierarchical clustering).
4. Identify the best clustering out of the different clusterings obtained.
5. Characterize and describe the clusters contained in the best clustering.

2.4 K-Means
In this section we outline the procedure followed to generate clusterings with the K-means algorithm.

2.4.1 Attributes’ selection

Considering that we are handling banking data, we study a customer based on the trust granted to
him by the bank (represented by the limit attribute), the average of his monthly billing amounts (ba
attribute), the average amount of his monthly payments(pa attribute) and his tendency to postpone a
payment or to pay duly on time (ps).

Based on these observations and the data transformation carried out in Section 2.1, we hence consider
the following groups of attributes, as they could well reflect the behaviour of a customer and at the same
time could help reduce the dimensionality of the dataset:

Attribute Set 1: {limit, ba, pa, ps}

Attribute Set 2: {limit, pa, ps}

Attribute Set 3: {ba, pa, ps}

2.4.2 Identification of the best value of k

In order to pick the best parameter k for K-Means, we made use of the Knee method by computing
the SSE for k ∈ [2, 20]. It is worth noting that we obtained extremely similar SSE decrease plots with
Attribute Set 1,2,3. Figure Figure 8 shows the SSE decrease plot just for Attribute Set 3.

Figure 8: SSE plot for k ∈ [2, 20] with Attribute Set 3.

From Figure 8, we noticed that a good value for k is 6 for Attribute Set 1. Looking at the SSE
decrease plots of Attribute Set 2 and 3, we noticed that the best of k for Attribute Set 2 and 3 was also
6.
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Best k SSE Silhouette
Attribute Set 1 6 114 0.43
Attribute Set 2 6 58 0.47
Attribute Set 3 6 46 0.52

Table 3: Summary of the SSE, Silhouette and k values obtained for Attribute Set 1,2,3 with k-means

2.4.3 Identification of the best Clustering

From Table 3, we notice that the clustering with Attribute Set 3 has the best silhouette and the least
SSE. Figure 9 shows a crosstab of the credit default attribute value following the clustering with
Attribute Set 3.

By comparing the clusterings obtained from the different Attribute Sets, we noticed that Attribute
Set 3 is particularly interesting to characterize the behaviour of defaulting customers.

Figure 9: A crosstab of the credit default attribute over the clustering obtained with Attribute Set 3

Cluster Index Name #Customers in Cluster D N D/N ba pa ps
0 Al 6253 983 5270 0,15 16965 3992 0,05
1 John 1618 211 1407 0,13 110307 10369 0,08
2 Jack 583 403 180 2,24 50251 2358 1,9
3 Jane 49 32 17 1,89 40557 631 4,6
4 Steve 1074 505 569 0,47 26088 2047 0,8
5 Mike 393 74 319 0,18 266851 16091 0,1

Table 4: Tabular representation of the centroids obtained for the clustering with k = 6 with Attribute Set 3. D
= #Defaulting Customers. N = #Non-Defaulting Customers

2.4.4 Characterization and distribution of the best clustering

Figure 10: On the left-hand side, a visual representation of the centroids obtained by the parallel coordinates
method for the clustering obtained with k = 6 with Attribute Set 3. On the right-hand side, a scatter plot of
the ba attribute over the ps attribute for each cluster with k = 6 with Attribute Set 3.

From the left-hand side of Figure 10, we notice that the clusters’ centroids are rather spread out one
from another one at the ba and ps attributes, whereas they are rather close one to another at the pa

∗https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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Figure 11: On the left, the distribution of the ba. On the right, the distribution of the limit for each cluster
with k = 6 with Attribute Set 3

attribute. This suggests that the resulting clusters will be well separated wrt the ba and ps attributes,
but not so well separated wrt the pa. This fact is further confirmed by the clusters’ Scatter Plot shown
in Figure 10, which shows customers being well-clustered wrt. the ps and ba attributes.

From Table 4, we obtained the following clusters (we recall that the limit is a measure of the the
“trustworthiness” of a customer):
Cluster 0: Al “The Conservative”: Al is the most represented customer in the dataset with 6253

records (about 2/3 of the customers). He is characterized by a very low ps, and a very low D/N
ratio, signifying that few customers belonging to this cluster will default and most customers will
repay their debts on time. Customers in this clusters are also characterized by an average trust, a
low ba and an average pa wrt. the overall distribution.

Cluster 1: John, “The Regular Spender”: John has similar characteristics to Al as far as D/N
ratio, ps and education are concerned. However, the major difference between Al and John lies
in the ba and pa amount, as John tends to spend 6 times as much as Al does, as his ba shows.
Nevertheless, he still manages to pay his bills on time, as his ps of 0.08 shows. Also, his pa is about
2.6 times as much as the one of Al.

Cluster 2: Jack, “The Typical Debtor”: Jack is specified by a low trust from the bank, an average-
low ba and an average-low pa, which is not sufficient to make him pay the billing amounts accumu-
lated over the months. In fact, this cluster is also characterized by a high ps of about 1.9, meaning
a significant delay in the payments. Also, most of the customers in this cluster tend to default,
as the D/N Ratio of 2.24 shows. This customer type, with 583 occurrences, well-represents the
typical defaulting customer, which generally does not default as far in time as Jane of Cluster 3.

Cluster 3: Jane, “The Broke”: Jane is characterized by a low trust from the bank, an average-low
ba, but a very high D/N ratio of 1.89. The most important feature is her ps of 4.6 though. This
ps is extremely high and denotes a clear tendency to delay payments up to the point in which she
cannot repay them anymore and defaults. Her pa is also extremely low, and confirms the fact that
she is not capable of paying the accumulated debts.

Cluster 4: Steve, “The Parsimonious”: Steve is characterized by the lowest ba, and a rather low
pa wrt. the overall distribution and a low trust from the bank. Despite his attitude at spending
little, about half of the customers in this cluster default; the ps of 0.8 shows that Steve tends to
slightly delay his payments before paying them back.

Cluster 5: Mike, “The Well-Off Guy”: Mike is characterized by the highest trust among all clusters
considered. Both his ba and pa are also highest wrt. the overall distribution of the ba and pa. His
D/N ratio as well as his ps are very low, confirming the fact that he tends to pay duly on time,
confirming that the bank’s trust in his repayment capabilities is well deserved.

From the clusters presently described, we see that a high ps is a key factor for understanding when
a customer is going to default. A low limit (trust from the bank), jointly with a very low ba and an
average-low ba are also key indicators for understanding customers that are going to default.

Furthermore, we analysed the frequency distribution of categorical attributes (i.e. education, status
and sex) over the obtained clusters, but no significant characterization of the resulting clusters could be
found when compared with the attributes’ respective global frequency distributions.
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2.5 DB-scan
In this section, we explain the approach adopted to generate clusterings with the DBscan algorithm.

2.5.1 Attributes’ selection

We identified the following sets of attributes onto which we run the DB-Scan algorithm based on the
Correlation matrix of Figure 7:

Attribute Set 1: {limit, ba, pa, ps}.

Attribute Set 2: {limit, ba-sep, ba-aug, ba-jul, ba-jun, ba-may, ba-apr, pa-sep, pa-aug,
pa-jul, pa-jun, pa-may, pa-apr};

Attribute Set 3: {limit, ba-sep, ba-aug, ba-jul, ba-jun, ba-may, ba-apr}.

2.5.2 Study of the clustering parameters

Based on the distance functions selected in Section 2.2, we selected 13 couples (ε,MinPts), ∀ MinPts ∈
{20, . . . , 212}, where MinPts stands for MinPoints. The first eight couples are shown in Table 5. The
k attribute was selected by applying the knee method and plotting the distance from the k-th nearest
neighbour for k ∈ 20, 212] .

MinPts ε
Euclidean Cityblock

1 0.23 0.63 0.03
2 0.25 0.65 0.04
4 0.28 0.7 0.05
8 0.3 0.8 0.06

16 0.32 0.85 0.08
32 0.35 0.9 0.09
64 0.38 1 0.1

128 0.42 1.1 0.13
256 0.46 1.2 0.15

Table 5: Min Points and corresponding ε, selected based on the Knee rule for every different distance type

2.5.3 Characterization and interpretation of the obtained clusters

After running the DB-Scan algorithm on all combinations of parameters, the resulting clusterings (only
the ones having more than one cluster) have been sorted according to their silhouette value.

The top 10 clusterings obtained with the parameters described in Section 2.5.2 are shown in Table 6.
Based on the results of Table 6, we report a sample of the the scatter plots obtained from the

clusterings with best Silhouette coefficient over a subset of attributes, namely: Rank 1 clustering
(i.e. clustering with the best silhouette coefficient) and Rank 5 clustering (i.e. clustering with fifth best
silhouette coefficient).

From these Figures, we observe that such clusters do not highlight any significant data shape nor any
significant clusters can be found; instead, these clusterings just represent a cut of the clustering obtained
via K-means, as shown in the clustering obtained with Attribute Set 3 of K-Means in Figure 10.

Therefore, based on the unsatisfactory clustering results obtained, we can conclude that the DB-
scan Algorithm is not a good clustering technique for our dataset. No matter which ε and minPoints
parameters and distance function is taken in combination with all the attribute sets considered. In all
analyzed cases, we do not obtain relevant clusterings. This is imputable to the inherent data distribution
of the dataset under study not being compatible with the functioning of the DB-Scan algorithm, which
separates data into clusters when data is well-separated in clusters. In fact, our data is just characterized
by one large cluster containing points very close to one another in it, and some outliers lying around
this big cluster, which represent insignificant clusters. For this reason, no significant clustering can be
identified.
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Rank Distance Attribute Set Eps NumTrueClusters NumNoisePts Silhouette
1 cityblock 1 0.63 3 0 0.767
2 cityblock 1 0.65 3 3 0.747
3 cityblock 1 0.70 2 3 0.744
4 euclidean 1 0.23 4 0 0.672
5 cityblock 2 0.70 2 113 0.574
6 cityblock 3 0.65 4 22 0.543
7 euclidean 1 0.25 5 8 0.507
8 euclidean 1 0.28 5 5 0.507
9 euclidean 1 0.30 4 12 0.507

10 euclidean 1 0.32 4 13 0.505

Table 6: Summary of the results obtained with the DB-Scan algorithm with the Attribute Sets selected in
Section 2.5.1 and the parameters described in Section 2.5.2
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Figure 12: Scatter plots of limit (x axis) over ba (y axis). On the left-hand side, a scatter plot of the rank
1 clustering according to the rank presented in Table 6; on the right-hand side, a scatter plot of the rank 5
clustering according to Table 6

2.6 Hierarchical clustering
After selecting distance functions as by Section 2.2 and attributes as by Section 2.6.1, we establish
the best number of clusters obtainable by cutting the dendogram at different heights, as described in
Section 2.6.2. Afterwards, we evaluate the clusters obtained with the ‘ward’, ‘complete’, ‘average’ and
‘single’ linkage methods.

2.6.1 Attributes’ selection

We selected four sets of attributes based on the correlation matrix shown in Figure 7 and on the attributes
selected in Section 2.4.1:

Attribute Set 1: {limit, ba-apr, ba-may, ba-jun, ba-jul, ba-aug, ba-sep, pa-apr, pa-may,
pa-jun, pa-jul, pa-aug, pa-sep}

Attribute Set 2: {limit, ba, pa, ps};

Attribute Set 3: {limit, ba, pa};

Attribute Set 4: {ba, pa, ps};

2.6.2 Identification of the best number of clusters

To establish the best number of clusters, we evaluate the ward, complete and average linkage methods.
For each linkage method, we generated dendograms with numClusters ∈ [2, 30], where numClusters is
the amount of clusters considered. For each cluster model obtained with the Euclidean and Cityblock
distance, we evaluate the silhouette coefficient, and report the results in Figure 13. From Figure 13, we
observe that all linkage methods are characterized by a similar behaviour: as expected, the silhouette
coefficient decreases as the number of clusters increases. Therefore, the best score is obtained for num-
Clusters = 2. However, for the purpose of the present hierarchical clustering analysis, a clustering just
with two clusters is not very significant. For this reason, we restrict numclusters to {3, 4, 5, 6} from now
onwards.
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To have a visualization of the results, for each linkage method and for each cut of the dendogram we
produce the scatter matrix on all attributes in the sets. We performed a visual inspection of the scatter
plots, scatter matrix and the attributes’ distribution for 3, 4, 5 and 6 clusters; finally we decided that the
best number of clusters were 6 for all four tests.

Figure 13: Silhouette score evaluated for numClusters ∈ [2, 30]. The left-hand-side plot shows the Silhouette
coefficient obtained with the ‘euclidean’ metric; the right-hand-side plot shows the results obtained with the ‘city
block’ distance. Each color is associated to one test: yellow = test 1, green = test 2, red = test 3 and blue =
test 4. Lines shapes’ are mappings to linkage methods: ‘ward’ = contiguous line, ‘complete’ = dashed line and
‘average’ = dotted line.

2.6.3 Linkage methods and dendograms

At this point, we have established that numClusters = 6 and Euclidean distance form the best clustering
model. In order to establish the best linkade method, we applied a brute-force approach to hierarchical
clustering by making use of all four methods: ‘single’, ‘complete’, ‘ward’ and ‘average’. Because the
results obtained with the single method were very poor, we did not include this method in the results.

Table 7 reports the silhouette coefficient for the clustering and the number of customers per cluster,
following the execution of each linkage method over the attribute sets described in Section 2.6.1 for num-
Clusters = 6; afterwards, we have cut the resulting dendograms to form 6 clusters. From Section 2.6.1,
we notice that the ‘complete’ and the ‘average’ methods produce extremely unbalanced clusters, with
some clusters containing very few customers; on the other hand, the ‘ward’ method succeeds at creating
more balanced clusters. For this reason, we selected the ‘ward’ method as best linkage method to produce
clusterings.

Attribute Set 1 Attribute Set 2 Attribute Set 3 Attribute Set 4
index silhouette elements silhouette elements silhouette elements silhouette elements

w
ar

d

1

0.2907

165

0.3807

548

0.4372

3559

0.4784

1415
2 1082 2410 2390 6068
3 915 3946 1662 32
4 1510 1584 562 609
5 2520 265 336 201
6 3778 1217 1461 1645

Table 7: Results of the hierarchical clustering on the four sets of attributes, by cutting the dendogram to form
6 clusters with the ‘average’, ‘complete’ and ‘ward’ linkage method.

2.6.4 Identification and characterization of the best clustering

We identified attribute set 4 as the best set of attributes for hierarchical clustering as it captures customers
with high D/N ratio in two clusters and is well fit for the purpose of describing defaulting customers, as
shown in Figure 15.

By looking at Table 8 and at the clustering obtained Figure 16, we notice that clusters with index
2, 5 and 6 have limit and ba directly proportional to their pa and are “safe” customers, with a very low
D/N ratio. Instead, clusters with index 2 and 3 feature a pa no longer directly proportional to their ba
and limit. Cluster 3 appears to be particularly interesting, as it captures the same situation captured
by Cluster 3 with K-means, namely “broke” customers with an extremely low pa (almost 0) and an
extremely high ps of 5.08 and a very high D/N ratio of 3.00. Cluster with index 4 also represents an
interesting default situation, as it has a ps of 1.92 and an average-low ba.

Also, from Figure 16, we observe that Attribute Set 4 leads to a good clustering among the ba and
ps attributes’ combination, but a not-so-good clustering among the ba and limit.
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Figure 14: On the left-hand-side, the dendogram obtained with the ‘ward’ method. On the right-hand-side,
the dendogram obtained with the ‘complete’ linkage method over the set Attribute Set4 of attributes defined in
Section 2.6.1. For both dendograms, the number of elements in each cluster is reported in Table 7.
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Figure 15: A crosstab of the distribution of the credit default attribute with Attribute Set 4 and the ‘ward’
linkage method.

Cluster Index # Elements in cluster D N D/N limit ba pa ps
1 1415 640 775 0.83 82961 23977.59 1794.94 0.77
2 6068 864 5204 0.17 170308 17427.68 4377.19 0.04
3 32 24 8 3.00 57500 14161.07 5.61 5.08
4 609 408 201 2.03 110131 70720.94 3005.19 1.92
5 201 45 156 0.29 396965 316147.74 15605.88 0.09
6 1645 227 1418 0.16 222030 122562.94 10685.10 0.09

Table 8: Results of hierarchical clustering on the Attribute Set 4 with the ‘ward’ linkage method in tabular
form
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Figure 16: On the left the scatter plot on ba and limit. On the right, the scatter plot of the ba and the ps for
the 6 clusters over Attribute Set 4.

2.7 Final choice of the best clustering approach
From the Observations drawn in Section 2.5.3, we evaluate the DB-Scan algortihm as the worst clustering
approach among all the considered approaches, as no significant clusters could be identified despite all
trials performed. The reason for its poor performance was identified to be the inherent data distribution
in the dataset.

Hierarchical clustering and K-Means both produce similar and good clusterings on the same Attribute
Set = {ba, pa, ps}. The results produced by Hierarchical clustering in Section 2.6.4 do seem to be more
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Clustering
Technique

Clustering
Quality Silhouette Amount of clusters Attribute Set Distance

K-Means Good 0.52 6 ba, pa, ps Euclidean
Hierarchical
Clustering Best 0.4785 6 ba, pa, ps Euclidean
DB-Scan Poor 0.767 3 limit, ba, pa, ps Cityblock

Table 9: Comparison of the best clusterings obtained with the K-means, Hierarchical and DB-Scan Clustering
algorithms
interesting with respect to the ones obtained with K-means in Section 2.4.4 though. Despite having a
lower Silhouette value as shown in Table 9, Hierarchical clustering manages to capture clusters both
for the pairs of attributes: limit, ba and the ps, ba. Also, the clustering obtained with Hierarchical
Clustering manages to capture the characteristics of defaulting customers very well; namely, it shows one
small cluster of customers delaying their payments by an extreme amount of time (5.08) and that have
close to 0 payment amounts (cluster 3), a small-sized cluster with customers delaying their payment by
a discrete amount (1.92) with little spending (cluster 4) and a cluster with slightly defaulting customers
and slightly delaying customers (cluster 1). All other clusters identified represent reliable customers that
do pay their debts on time.

3 Classification
In this section, we describe the classification algorithms used to predict the target variable ‘credit default’
and compare the performance of the algorithms employed.

3.1 Dataset Splitting and Procedure
We split the dataset by 80–20, namely 80% of the dataset is used for training the classification models
and the remaining 20% of the dataset is used for testing. We did test our models both with the training
and test data, to understand whether some classification models were overiffitng.

We adopt an approach aimed at chunking the training and test parts of the dataset into smaller
chunks and train our model on a set of these chunks. The purpose of this further chunking was to
increase the granularity of the training and test sets: the model having best performance on the Kaggle
test dataset would be trained on the fold most closely resembling it (and hence best fitting it). This
innovative approach was named n-Fold Subdivision, where n is the amount of chunks into which the
training and test set are respectively subdivided. If n=10 we split the training set and the test set into
10 different folds for the training and test parts; each fold has 90% of the training set and 90% of the
test set.

In the comparison of the different classification models considered, we will always make use of the
F-Score computed on the test data, as the goal of our classification is to maximize the final F-Score
computed on the Kaggle test dataset.

3.2 Decision tree
In order to learn the best possible decision tree, we firstly create a Simple Decision Tree (SDT) in
Section 3.2.1 and Section 3.2.2, then proceed to optimize it by generating an Optimized Decision Tree
(ODT) in Section 3.2.3.

3.2.1 Simple Decision Tree by 10-fold cross-validation

We create a decision tree based on the following parameters: max depth = 2, min samples split = 2,
min samples leaf = 1 and criterion=gini. We pick these parameters as we want create a tiny decision
tree that will act as a baseline performance onto which we will improve via parameter optimization.

Then, we apply 10-Fold Cross-validation Stratified for each fold obtained applying the 10-Fold
Subdivision technique. Table 13 reports the best model obtained.
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3.2.2 Simple Decision Tree by downsampling

We notice that the dataset is strongly unbalanced towards non-defaulting customers (with 7762 entries)
vs. defaulting customers (with 2208 entries). We tried to perform downsampling of the dataset to the
minority class represented and created SDTs both on the data prior to downsampling and following
downsampling. The results obtained with downsampling both on the training and the test dataset
turned out to be very poor (F-Score of 0.68) and are surpassed by SDT generation by cross-validation in
Section 3.2.1. For this reason, we do not consider downsampling with any other classification algorithm.

3.2.3 Optimized Decision Tree

In order to improve the performance of the Optimized Decision Tree (ODT), we apply the 10-Fold
Subdivision technique.

For every fold, we perform hyper-parameter tuning for the SDT tree described at the beginning
of Section 3.2.1 with the Grid Search and Randomized Search algorithms based on the parameters
of Table 10. We made use of the ‘Gini’ splitting criterion, which turned out to be yielding the best
performance when compared with the ‘entropy’ splitting criterion.

Parameters’ Configuration

Grid Search
‘max depth’: [2:5]
‘min samples split’: [2, 5, 10, 20, 30, 40, 50, 100]
‘min samples leaf’: [1, 5, 10, 20, 30, 40, 50, 100]

Randomized Search
‘max depth’: [2:100]
‘min samples split’: [2, 5, 10, 20, 30, 50, 100, 150, 200]
‘min samples leaf’: [1, 5, 10, 20, 30, 50, 100, 150, 200]

Table 10: Parameters’ Configurations used to tune the Grid Search and Randomized Search algorithms

Table 11 shows the metrics obtained by applying Grid Search optimization via 10-fold sub-division,
and the parameters identified from for each fold’s best model. We compared the performance of the
grid search and the randomized search optimization algorithms, and noticed that randomized search
generated ODTs with a very high max depth (max depth >= 30), which are likely to overfit the data.

Index max
depth

min
samples
leaf

min
samples
split

Data
Type Accuracy Roc-Auc Precision Recall F-Score

Test 0.81 0.7 0.8 0.81 0.791 2 100 2 Train 0.82 0.7 0.8 0.82 0.8
Test 0.81 0.69 0.8 0.81 0.792 2 1 2 Train 0.82 0.7 0.81 0.82 0.79
Test 0.81 0.69 0.8 0.81 0.793 2 1 2 Train 0.82 0.7 0.81 0.82 0.79
Test 0.81 0.73 0.89 0.81 0.794 4 10 2 Train 0.83 0.77 0.82 0.83 0.81
Test 0.83 0.71 0.82 0.83 0.815 2 1 2 Train 0.82 0.7 0.8 0.82 0.79
Test 0.81 0.68 0.79 0.81 0.786 2 100 5 Train 0.82 0.71 0.81 0.82 0.8
Test 0.82 0.71 0.81 0.82 0.87 2 100 5 Train 0.82 0.7 0.8 0.82 0.79
Test 0.82 0.69 0.81 0.82 0.798 2 1 2 Train 0.82 0.7 0.81 0.82 0.79
Test 0.83 0.77 0.81 0.83 0.819 4 / 2 100 5 / 2 Train 0.82 0.82 0.8 0.82 0.8
Test 0.81 0.74 0.79 0.81 0.7910 4 5 20 Train 0.83 0.76 0.81 0.83 0.81

Table 11: Parameters and metrics obtained for the best ODT for each fold index obtained with the Grid Search
optimization algorithm and based on the 10-fold sub-division approach

3.2.4 Optimized Decision Tree Interpretation

From Table 11, we select the ODTs having best F-Score on the test set. In case of tie (F-Score 0.81),
we compare further metrics on the test set in this order: roc-auc, accuracy, precision. The decision trees
with best F-Score on the test dataset have been found to be the following ones:

1. ODT (1) with index = 9, max depth = 4, min samples leaf = 100, min samples split = 5 with
a test F-Score of 0.81.
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2. ODT (2) with index = 9, max depth = 2, min samples leaf = 100, min samples split = 2 with
a test F-Score of 0.81.

ODT (1) and ODT (2) have the same performance metrics on the training and test dataset under
study. In order to try and understand which one would perform better, we perform two submissions on
Kaggle, and we obtain the same identical classification result of 0.81716 as F-Score.

Figure 17: Complex ODT (1) with 4 levels.

Figure 18: Simpler ODT (2) with 2 levels.

From Figure 17 and Figure 18 we notice that ODT (2) represents a “pruned” version of ODT (1);
ODT (1) and ODT(2) have the exact same performance both on the training and test set as well as
on the Kaggle test data. Therefore, we prefer ODT (2) over ODT (1) according to the Occam’s Razor,
telling us that a simpler model should always be preferable to a more complex one (especially if these
two models are functionally equivalent)

Analysing ODT (1) and (2), we observe that the main split occurs at ‘ps-sep’ for both decision trees;
then, on the left-hand side of ‘ps-sep’ we have a split on ‘ps-aug’ for both decision trees. ODT (2)
manages to capture almost entirely the deep branching of ODT (1) prdoducing “no” as an answer for
7116 samples. The only non-captured values with a “yes” attribute are 193 samples, where ‘ps-apr’
branches based at a value of 1.0.

On the right-hand side of the branching at ‘ps-sep’ in ODT (1) we have a branching at ‘ps-apr’ again
at the value 1.0. No matter which value ‘ps-apr’ assumes, the class assigned by the underlying branches
is always going to be ‘yes’. This fact suggests that we could have stopped earlier in our branching, and
ODT (2), having a branching at ‘ps-jul’, hence manages to capture the right-hand side of ‘ps-sep’ in a
more succinct way for the customers defaulting.

3.3 Random forest
Analogously to the approach followed for Decision Trees, we firstly create a Simple Random Forest Model
in Section 3.3.1, then we proceed to optimize it in Section 3.3.2.
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3.3.1 Simple Random Forest Model

We apply 10-fold cross-validation to create a Simple Random Forest Model. The basic Simple Random
Forest model is initialized with the following parameters: n estimators = 200, max depth = None,
min samples split = 2, min samples leaf = 1 and criterion = gini. We pick these parameters as we want
create a simple random forest model that will act as a baseline comparison model onto which we improve
via parameter optimization.

The simple random forest model with best performance on the test dataset out of the 10 models
generated with the 10-Fold Subdivision technique is shown in Table 13. Its 1.0 metrics on the training
dataset shows that this model overfits the training dataset.

3.3.2 Optimized Random Forest Model

We optimize the performance of the Simple Random Forest Model described at the beginning of Sec-
tion 3.3.1 via hyperparameter tuning through the Grid Search and Randomized Search algorithms with
the parameters’ configuration of Table 10 and 10-fold dataset Sub-division of Section 3.2.3.

The best models (i.e: the ones with the best F-Score on the test dataset) appear to be the following
ones.

1. Model (1):Optimized Random Forest with index = 4: It features max depth = None,
min samples split = 100, min samples leaf = 1 and has an F-Score of 0.82, obtained via Grid
Search .

2. Model (2): Optimized Random Forest with index = 4: It features max depth = 22,
min samples split = 100, min samples leaf = 10 and has an F-Score of 0.82, obtained via
Randomized Search.

In order to understand which model would perform best at classifying new unseen data, we perform
two submissions on Kaggle. Model (1) appears to have an F-Score of 0.8165. Model (2) appears to have
an F-Score of 0.81766. We can hence conclude that Model (2) is the best one obtained via Optimized
Random Forest.

As already introduced in Section 1, the shape of the dataset does not allow a good classification of
customers into defaulting and non-defaulting ones.

A numerical proof is given in Table 12, where it is easy to observe that the number of false negative
(in other words, those customers who were identified as non-defaulting, although their actual behaviour
was a defaulting one) and the number of false positive (the other way round) is pretty large.

Actual values
Yes No

Predicted values Yes 887 347
No 1321 7415

Table 12: Confusion matrix on the Optimized Random Forest Model (2), from the application of optimized
random forest classification algorithm obtained with randomized search and index 4.

3.4 Deep Learning
We considered the deep learning model described at this page.†

We made use of one input layer with 23 nodes, encompassing all the features in the dataset (excluding
the output variable), along with two hidden layers, respectively with 20 and 10 nodes and one output
node. The activation functions used were “relu” for the input and the hidden layers, and “sigmoid” for
the output layer. Resulting metrics are shown in Table 13

3.5 Classification Summary
Table 13 shows the metrics obtained for the best models of all the classification algorithms considered.

We notice that SDT, ODT, Simple Random Forest and Optimized Random Forest have a a com-
parable performance, with the Optimized version of the Random Forest and the Decision Tree scoring

†https://medium.com/@Saadism/credit-card-default-prediction-using-tensorflow-part-1-deep-neural-networks-ef22cfd4d278
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Method (best F-Score) Data Type Accuracy Roc-Auc Precision Recall F-Score

Simple Decision Tree Test 0.83 0.71 0.82 0.83 0.81
Train 0.82 0.7 0.8 0.82 0.79
Test 0.83 0.77 0.81 0.83 0.81Optimized Decision Tree Train 0.82 0.82 0.8 0.82 0.8

Simple Random Forest Test 0.82 0.79 0.81 0.82 0.81
Train 1.0 1.0 1.0 1.0 1.0
Test 0.83 0.81 0.82 0.83 0.82Optimized Random Forest Train 0.83 0.86 0.82 0.83 0.81

Deep Learning–2 Layers Test 0.7 0.537 0.68 0.71 0.7
Train 0.711 0.531 0.68 0.71 0.69
Test 0.41 0.72 0.77 0.41 0.41Naive Bayes Train 0.39 0.69 0.75 0.39 0.39

KNN with k = 3 Test 0.76 0.63 0.73 0.76 0.74
Train 0.84 0.89 0.83 0.84 0.83

Table 13: Summary of the best classification models for the different classification techniques considered

better than their Simple counterpart (as expected). It is worth noticing that the 1.0 classification score
obtained in all metrics of the Simple Random Forest model is a strong indicator of an overfitting model.

The model with best F-Score on the Test dataset appears to be the Optimized Random Forest one,
with an F-Score of 0.82. On the other hand, Naive Bayes and Deep Learning appear to have a drastically
lower F-Score, with Naive Bayes being the worst method at classifying both the training and test data.
Deep Learning, in fact, does not produce relevant results because of the lack of a sufficiently large dataset
and just features an F-Score of 0.7 on the test dataset. KNN, instead, appears to perform discretely, with
an F-Score of 0.74. Though KNN’s F-Score is worse than SDT’s, ODT’s and the Simple and Optimized
version of Random Forest, it still features the highest classification score on the training dataset and
highest Roc-Auc.

4 Pattern mining
In this section we address the problem of finding frequent itemsets and association rules in order to
better understand the information hidden in the dataset.

4.1 Attribute selection and binning
As a first issue we dealt with the issue of finding the most informative attributes, thanks to the conclusions
drawn from the Decision Trees of Section 3.2.4 and the clustering results in Section 2.7.

Since customers can not be distinguished between defaulting and non-defaulting ones wrt the sex,
education, status and age attributes, we did not consider such attributes for pattern mining.

The resulting set of attributes is the following: limit, ba (average of the billing amount), pa (average
of the payment amount) and ps (the payment status). For the ps, we considered: ps-sep, the last
payment status of the customer; ps mode, the mode of the payment statuses of a customer; ps, the
average of a customer’s payment statuses following data transformation as by Section 2.1.

In order to run the apriori algorithm we applied equal-frequency binning on limit, ba, pa and ps
attribute.

4.2 Frequent itemsets extraction
We ran the apriori algorithm for frequent itemsets extraction, based on the attributes selected and
the results have the shape described by means of Figure 19. We may observe that the frequency of
those patterns that occur 1000 times (or, equivalently, have a support of 0.1) is almost three times the
frequency of the patterns that have twice the support.

After some reasoning, we noticed that more than 50% of defaulting and non-defaulting customers
fell in the first three bins of the pa and ba attributes. This fact made the defaulting and non-defaulting
customers undistinguishable, therefore we discarded those itemsets containing elements from pa and ba
attributes.

The resulting frequent itemsets, displayed in Table 14, Table 15, Table 16 and Table 17, are all close
except for {[1.0, 1.5)ps, yes, [10000.0, 87000.0)limit} which is only frequent. No maximal itemsets were
found.
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Figure 19: Frequency plot of itemsets with different values of support.

From the generated itemsets, we noticed an expected behaviour. Non-defaulting customers are char-
acterized by a tendency to use revolving credit, not to consume or to pay in the same month as we can
see from Table 14.

Furthermore, we noticed that defaulting customers are characterized by a higher tendency to delay
payments, as Table 15 shows, although the support is very low (due to the low frequency of ‘yes’ value
of the attibute credit default).

Pattern Support
no, [0.0, 0.5)ps 0.73

−2.0ps mode, no 0.12
−1.0ps mode, no 0.17

Table 14: Frequent itemsets for the expected
behaviour of non-defaulting customers.

Pattern Support
[1.0, 1.5)ps, yes, [10000.0, 87000.0)limit 0.02

[2.0, 2.5)ps, 2.0ps mode, yes 0.02
[3.0, 3.5)ps, 2.0ps mode, yes 0.0007

Table 15: Frequent itemsets for the expected behaviour of de-
faulting customers.

However, we also obtained some unexpected behaviour both for defaulting and non-defaulting cus-
tomers, as shown in Table 16. There exist customers who do not default, despite having a behaviour
typical of those who default.

The same anomaly was discovered for defaulting customers, as shown in Table 17.

Pattern Support
2.0ps mode, 2ps-sep, no 0.01

[1.0, 1.5)ps, no 0.03
[2.0, 2.5)ps, 2.0ps mode, no 0.007
[3.0, 3.5)ps, 2.0ps mode, no 0,0007

Table 16: Frequent itemsets for the unex-
pected behaviour of non-defaulting customers.

Pattern Support
yes, [0.0, 0.5)ps 0.15
yes, 0.0ps mode 0.1

−1.0ps mode, yes 0,03
−2.0ps mode, yes 0,02

Table 17: Frequent itemsets for the unexpected
behaviour of defaulting customers.

By comparing Table 17 with Table 15, showing respectively the expected and unexpected behaviour of
defaulting customers, we observe that there exist itemsets with higher support describing the unexpected
behaviour of defaulting customers than those that describe their expected behaviour.

More reasonably the behaviour shown in Table 14 and Table 16 underlines a lower support for the
unexpected itemsets, confirming the fact that unexpceted itemsets are indeed rare.

These two facts introduce the situation we are going to face in Section 4.3, where the predictive
accuracy is hindered by the unexpected behaviour of a large quantity of defaulting customers.

4.3 Association Rules
In this section we discuss the most interesting association rules obtained through the apriori algorithm.
The frequency of the obtained rules is shown in Figure 20. In this case, differently from the itemsets’
case (Figure 19), the relation between the frequency of a certain rule is linear in the confidence value.

In order to add some more information about the rules that have been generated we refer the reader
to Figure 20.

4.3.1 Association rules to predict the target variable

Given the frequent itemsets found in Section 4.2, it was decided to use the rules that best model the
behaviour of the defaulting and non-defaulting customers.

For this reason, we used the rules obtained from the expected behaviour of defaulting customers,
shown in Table 17, although these rules are characterized by a greater support wrt the rules obtained
from the unexpected behaviour of defaulting customers and shown in Table 15.
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Figure 20: On the lefthand side, frequency plot of rules by varying the confidence value. On the righthand side
a scatter plot of support, lift and confidence.

Although in frequent itemsets analysis it was highlighted that the majority of defaulting customers
have the same behaviour of non-defaulting ones, the rules that outline the expected behaviour have the
highest confidence and lift values.

The result of this process is described in Table 18, whereas the confusion matrix is shown in Table 19.
From this table we compute the accuracy, which is 0.814.

RHS LHS Confidence Lift
no 0ps sep, 0.0ps mode, [0.0, 0.5)ps 0.88 1.13
no −1ps sep 0.83 1.06
no −1.0ps mode 0.83 1.06
no −2.0ps mode 0.82 1.05
yes 7.0ps mode, [10.0, 72206.875) 0.8 3.6
yes 3.0ps mode 0.76 3.4
yes 3ps sep 0.76 3.4
yes 4ps sep 0.73 3.3
yes 2ps sep 0.68 3.08
yes 5ps sep 0.63 2.8
yes 2.0ps mode 0.62 2.8
yes [1.0, 1.5)ps 0.56 2.54

Table 18: Most significant association rules for predicting the target variable.

Actual values
Yes No

Pred. values Yes 1058 701
No 1150 7061

Table 19: Confusion matrix obtained from the application of the association rules for target variable prediction.

4.3.2 Association rules for missing values replacement

We recall from Section 1.2 that missing and invalid values are only present in the age, sex, education
and status attributes. We generated association rules for these four attributes, without considering the
ba and pa attributes, with minimum support = 0.05 (corresponding to 5 rows of the dataframe) and
minimum confidence = 0.05. The number of rules generated is 1187, but we removed 447 rules because
they had a missing value either on the right-hand-side (RHS or consequent) or on the left-hand-side (LHS
or antecedent). The RHS and its number of repetitions are reported in table 20 for all 740 remaining
rules. For each row in the age, sex, education and status attributes where at least one missing or
invalid value is present for each row, we selected the rule to correct the missing value whose itemset
returns the maximal number of matches. In case two or more rules are returned, we pick the one with
maximum confidence. An example of this approach is shown in Table 21 when trying to correct the sex
attribute, where we considered the rules with RHS (Right-Hand-Side) equal to ‘female’ or ‘male’, and
picked the rule with maximum confidence, hence producing ‘female’ as predicted value for sex.

The results of this procedure are reported in Table 22. As we can see, for the education, status
and age attributes, the generated rules are able to predict all values except for three rows, which have
an ‘NaN’ value in all attributes except for the sex attribute.
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attribute RHS # rules mean support mean confidence mean lift

age

[21.0, 34.5) 53 0.0550 0.4922 1.0416
[34.5,48.0) 53 0.0380 0.2980 0.9174
[48.0,61.5) 51 0.0122 0.1182 1.1696
[61.5,75.0) 39 0.0011 0.0089 1.3347
female 79 0.0446 0.6007 0.9963sex male 79 0.0290 0.4005 1.0351

education

graduate school 54 0.0380 0.3191 0.9180
high school 55 0.0178 0.2037 1.2183
other education 35 0.0005 0.0068 1.8869
university 55 0.0501 0.4662 0.9945
married 67 0.0366 0.3859 1.0268
single 68 0.0417 0.4293 0.9884status
others status 52 0.0009 0.0167 2.2250

Table 20: Mean metrics of the association rules for replacing missing values.

Sex Education Status Age Predicted Sex
NaN graduate school single 24 female

RHS LHS Support Confidence Lift
female graduate school, single, [21.0, 34.5) 0.0533 0.6114 1.0140
male graduate school, single, [21.0, 34.5) 0.0335 0.3839 0.9921

Table 21: Table above: Example of a row having a missing value in the sex attribute. Table below: eligible
association rules used to predict the sex attribute. The highlighted rule is the one used to predict the sex
attribute as it features the highest confidence.

Attribute # Missing Values # Predicted Values Accuracy
Sex 100 100 0.9993
Education 127 124 0.9875
Status 1817 1814 0.9462
Age 945 942 0.9727

Table 22: Accuracy of the predicted values for the sex, education, status and age attributes with the associ-
ation rules of Table 20.

5 Conclusions
In the analysis of this banking dataset, we used many data mining techniques with the intention of
distinguishing trustworthy customers from untrustworthy ones. We presently summarize the results
obtained with such techniques.

In the preliminary Data Understanding part (Section 1), we addressed issues related to data semantics
and quality and eliminated redundant variables. In this section, we also pointed out that the main
attributes that characterize defaulting customers from non-defaulting customers are the tendency of a
customer to postpone his payments.

In the section about Clustering (Section 2), we showed how a customers’ history of payments and
tendency to postpone payments is crucial to cluster customers into groups of mostly-defaulting customers
and mostly non-defaulting customers. None of the clustering methods we employed (i.e. K-Means,
Hierarchical and DB-Scan clustering) highlighted exclusively defaulting or exclusively non-defaulting
clusters.

For what concerns Classification (Section 3), we created several predictive models based on Decision
Trees, Random Forest, Deep Learning, KNN, Naive Bayes. We obtained good classification results,
although these were strongly limited by the semantic inconsistencies present in the dataset (especially
hindering the classification of defaulting customers).

Last but not least we dealt with Association Rules (Section 4.3), where we showed the existence
of interesting item sets that characterize the behaviour of defaulting and non-defaulting customers.
Namely, non-defaulting customers were found to be characterized by an expected behaviour, having a
very low payment status. Instead, defaulting customers were found to be characterized by an unexpected
behaviour, as they often exhibit characteristics typical of non-defaulting customers.

By applying the association rules, we obtained excellent performance when predicting missing values.
For the prediction of the target variable, we obtained a comparably lower accuracy wrt the one obtained
in the classification phase.
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