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ABSTRACT
Understanding the behavior of a system is a key step in the analysis
of a system and represents a pre-requisite for the optimization of the
usability and structuring of a software application. One of the most
widely adopted approaches for capturing the usage of a system is
via a statistical model (e.g: Markov Chains). AMarkov Chain is a sta-
tistical model apt for capturing a system characterized by multiple
states, with transitions among the different states occurring with a
certain probability. Currently, there exists an automatic approach
for building Hidden Markov Models programmed with the R pro-
gramming language that, however, does not scale well to big data. In
this report, I present a proof-of-concept Hadoop Map-Reduce script
for creating Hidden Markov Models apt for crunching big data
and evaluate its performance from a theoretical and experimental
point of view. I also compare the performance of the Hadoop script
with the performance of the existing R-based script. Experimental
results carried out on dedicated parallel hardware show that the
performance of the Hadoop script overcomes the performance of
the R-based script when handling large quantities of data, whereas
on a commodity laptop the performance of the Hadoop solution
overcame the performance of the R-based solution for any amount
of data considered. Finally, experimental results also indicate that
the effective performance of the Hadoop script comes very close
to its ideal theoretical performance, especially if handling a very
large quantity of data. Hence, close-to-ideal scalability is attained.

1 INTRODUCTION
As part of my Bachelor thesis in Computer Science and Engineering
at the Free University of Bolzano-Bozen, I worked on the creation
of a method to automatically and iteratively build process models,
capturing the intents of users while interacting with a software
system. In such process models, intents are expressed as a set of
actions performed by a user to a system to achieve specific use
goals [8].
In my method, I applied the theory of Hidden Markov Models
(HMMs). HMMs are Markov Chains where the system under study
is assumed to have hidden states [10]. HMMs’ states represent users’
intentions, symbols represent unique user actions and observations
consist of the overall set of interactions with the system under
study.
My approach was inspired by Damevski et al. ’s Interactive and

Iterative approach [4]. Damevski et al. build IIHMMs (Interactive
Iteratively built Hidden Markov Models), whose construction re-
quires the interaction of a human expert to identify interesting
sequences. My approach is aimed at automatizing Damevski et al.’s
approach, by automatizing the process of creating HMMs, with no
need for human intervention.

2 PROBLEM STATEMENT
The current approach for creating AIHMMs (Automatic Iterative
Hidden Markov Models) described in [8] is currently implemented
in R and was parallelized as part of the Paralell and Distributed Sys-
tems course (SPM - 2nd Semester of A.Y. 2017-2018) in order to pro-
cess large quantities of data by means of a map-reduce mechanism
[5]. However, native R is a rather slow and very high-level language,
not well suited for efficient high-performance computing, in which
fine-level tuning of lower-level mechanisms may need to be applied.
Hadoop, on the other hand, is a Java-based framework, providing
efficient higher-level programming mechanisms for cruching big
data, while at the same time allowing for a tigher control of the
objects, data types and mechasisms involved in the computation,
specifically optimized for Map-Reduce programs. A Hadoop-based
implementation of the AIHMM scripts would hence hence possibly
allow for a more efficient utilization of the underlying resources
wrt. an R-based implementation. In particular, the Initialization
Phase described in 4.2.1 of the HMM costruction phase represents
the major bottleneck of the program and was parallelized. Such
Hadoop Map-Reduce implementation of a part of the initialization
phase code for AIHMM generation is hereby presented.

3 RELATEDWORK
The present work is mainly based on the work of Damevski et al. in
[4], who apply an interactive and iterative approach for HMM con-
struction for the discovery of developer debugging intentions based
on interesting sequences. In their proposed approach, interesting
sequences consist of sequences of symbols that can possibly give
rise to a new state. Interpretation of interesting sequences is per-
formed manually by a human expert, who decides whether a new
state could better capture a set of interesting sequences. Interesting
sequences consist of sequences that are well represented by the data,
but not by the model. Should an expert decide to add a new state to
the HMM based on the interesting sequences found, the symbols
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timestamp developer_id message

2014-09-09 21:51:07 2653 View.Server Explorer
2014-09-09 21:51:09 2653 View.Properties
2014-09-09 21:51:16 2653 View.Solution Explorer

... ... ...
Table 1: A few rows from the BlazeData_Dev_2653.csv log
file of the dataset

present in the interesting sequences picked will be constrained to
that new state and a new iteration of the algorithm is triggered,
where the HMM model is trained with the Baum-Welch Algorithm
[12]. Originally, interactive HMM construction based on interest-
ing sequences was proposed by S. Jaroszewicz in [9], who consider
this approach as able to "produce accurate but easy to understand
models". In my approach, instead, I mined usage logs of a system.
Logs are one of the major data sources used in building prediction
models in empirical software engineering [11]. System logs have
been extensively used in diagnosing faults, scheduling applications
and services of hardware [1, 7], or in dependable computing, and
in computer networks management and monitoring [14, 17]. In
software engineering, system logs have been employed to model
the workflow design of the activity processes [15], like Petri nets
or to predict system misbehavior [13]. There are few papers that
mined usage logs of a system, as use logs are not automatically
collected by modern logging services. Among these, Astromskis et
al. [2] mined use logs to understand the usability of the same ERP
system that was also considered in [8] by analyzing the frequency
of users’ chains of interactions.

4 BACKGROUND
4.1 Dataset
The dataset under study [3] consists of log files of developers’
interactions with the Visual Studio IDE at the ABB Group ©. The
dataset consists of 145 log files from as many developers. Each
dataset row consists of a tuple with three columns: a timestamp,
the ID of the developer that generated the interaction, and the
message (e.g., View.Properties). Overall, the dataset has 8197261
rows andweighs 351.1 MBs. A few examples of entries in the dataset
are given in Table 1.

4.2 HMM Construction Process
The procedure for AIHMM construction is made up of two phases:
an Initialization Phase, and an Iterative Phase.

4.2.1 Initialization Phase. The Initialization Phase represents the
program’s bottleneck, as the sequential version of the initialization
phase takes longer than onemonth to runwith the dataset described
in Section 4.1. The initialization phase is made up of the following
phases:

(1) Dataset loading and pre-processing: A set ofM indepen-
dent datasets of developers’ interactions with an IDE (ob-
servations) are loaded from the disk. From the loaded obser-
vations, outlier symbols are removed. Outlier symbols are

all those symbols that are either too frequent or extremely
unfrequent in the dataset.

(2) Sequences’ identification: Messages in the set of observa-
tions loaded from the dataset are grouped into sequences (i.e.,
actions performed in a timeframe of no more than 30 sec-
onds from one another carried out by the same developer)
and a sequence ID is assigned to every sequence of time-
contiguous messages. Too long sequences (i.e., lasting longer
than 6000 seconds) and too short sequences (i.e: lasting less
than 120 seconds) are discarded.

(3) HMM initialization and training: An HMM is initialized
with one single state and unique actions in the dataset are
taken as symbols of the HMM. Then, the HMM is trained
with the Baum-Welch algorithm, a Maximum Likelihood Es-
timator algorithm, which takes the loaded sequences
(observations)O from phase (2) as input and tunes theHMM’s
parameters so as to maximize P(θ |O) , the probability of the
observations O to be captured by the HMM model θ .

(4) Sequences’ Sorting: After all sequences are identified in
phase (2), these are sorted in lexicographical order to allow
for efficient θ -frequent and θ -probable sequences’ computa-
tion, as by [4].

(5) θ-frequent sequences identification: Sequences occur-
ring very frequently in the dataset are identified according
to Algorithm 2, as by [4].

(6) Unconstrained HMM training and new log-likelihood
computation: In this step, an unconstrained HMM with
two states is created and trained over the set of observations
of the dataset. Furthermore, the log-likelihood of this newly
created unconstrained HMM is computed and compared to
that of the HMM created in phase (3).

4.2.2 Iterative Phase. The iterative phase is aimed at finding an
HMM model characterized by the least possible log-likelihood (i.e:
the best possible model). In every iteration, a new state is added,
onto that symbols present in the interesting sequences are con-
strained. The iterative phase is made up of three sub-phases, which
are outlined in the following paragraph. If either of the halting
conditions outlined in the three sub-phases is met, the iterative
phase stops.

(1) Most interesting sequences’ identification: The most in-
teresting sequences are identified based on the dataset’s ob-
servations and the HMM(n), where n is the current iteration
index. Interesting sequences are defined as sequences that
are well captured by the dataset’s observations, but are not
well captured by the HMM(n) model [9] . If no interesting
sequences are identified, the AIHMM generation phase stops
and HMM(n) is returned.

(2) Log-Likelihood comparison: HMM(n + 1) is created by adding
a new state to HMM(n). The symbols present in the inter-
esting sequences are then constrained to this new state. Af-
terwards, the log-likelihood of HMM(n) and HMM(n + 1) are
compared. L stands for log-likelihood of a model θ , given
observations O , i.e: L(θ ) = log(P(θ |O))
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if L(HMM(n+1)) > L(HMM(n)): HMM(n + 1) passed to (3)

if L(HMM(n+1)) ≤ L(HMM(n)): HMM(n) is returned
(3) Comparison of constrainedHMM(n + 1)withunconstrained

HMM(n + 1): In every iteration, after symbols identified in
interesting sequences are constrained onto the new state of
HMM(n+1), an unconstrained model of HMM(n+1) is cre-
ated and trained (i.e: with no symbols constrained onto
the newly added state). Then, the log-likelihood of these
HMMs is compared. HMMC stands for “HMM Constrained",
whereas HMMU stands for “HMM Unconstrained".
if L(HMM

(n+1)
C ) > L(HMM

(n)
U ) : HMM(n+1)C passed to Itr. n + 1

if L(HMM
(n+1)
C ) ≤ L(HMM

(n)
U ) : HMM(n+1)C is returned

5 PARALLELIZATION METHODOLOGY
The program was parallelized according to the Map-Reduce para-
digm. Mappers are used in steps (1), (2) of the Initialization Phase,
whereas the reducer represents step (3) of the Initialization Phase.
The Map-Reduce architecture adopted is shown in Figure 2.

Map-ReduceModelling: Firstly, Log files are distributed to the
different mappers by the Hadoop scheduler. Then, during the map
phase at each mapper, their content is parsed in a sequence-by-
sequence fashion and outlier messages are removed. Contiguous
messages belonging to the same sequence are then grouped into
sequences, and too long or too short sequences are filtered out.
Finally, at the reducer, all sequences are merged into a set of se-
quences to be used to train an HMM and are output for further
processing in phase (4) of the Initialization phase, where they need
to be sorted.

Based on the Parallelization scheme outlined in Figure 2, I mod-
elled the Completion Time of phases (1), (2), (3) as follows. The
superscript of each step is the index of the phase considered.

Tid (n) = T1,2Mapper(n) + T
3
Reducer(n)

T 1,2
Mapper was parallelized via a map and can be expressed as:

T 1,2
Mapper (n) =

M∑
i=1

TFilei

N

n

WhereM is the amount of datasets used, N is maximum amount
of existing mappers, n is the amount of mappers in a job instance.
TFilei is the time to load, pre-process and identify the sequences
contained in the i-th log file.

T 3
Reducer represents the ideal time required to gather all se-

quences at the reducer, initialize the HMM and train the initialized
HMM with the loaded sequences.

6 IMPLEMENTATION DETAILS
In my HMM Hadoop Map-Reduce script1, I implemented phase (1),
(2), (3) of the Initialization Phase outlined in Section 4.2.1 whose
architecture was described in Section 5. The implementation under-
went three main versions, before achieving a final fully-functioning
and optimized program in the third version.

6.1 Implementation Challenges
6.1.1 Full Log File processing. It is important to note that during
phase (2) of the Initialization Phase described in Section 4.2.1, single
log files need to be processed atomically (i.e., we cannot split a single
log file’s content among two or more mappers). In fact, if we were
to split a log file’s content among multiple mappers, a sequence’s
content would erroneously be assigned to two separate sequences.
For this reason, I made use of the WholeFileInputFormat class in
the setInputFormatClass and WholeFileRecordReader, as de-
scribed by Tom White in [16], in order to process a single log file
in a single mapper.

6.1.2 Sequence ID assignment. Sequence IDs need to be assigned to
contiguous sequences of messages as described in phase (2). Because
processing of different log files occurs in parallel, we must ensure
that each sequence’s sequence ID must be different from the other
log files’ sequence IDs. To this end, I made use of the developer ID
contained in a single log file name (e.g., BlazeData_Dev_603.csv
contains messages of a developer with ID 603) as initial sequence ID,
multiplied by an upper bound of the amount of sequences present
in a file (100000). This initial sequence ID is increased whenever a
sequence’s end is reached at every mapper.

Data: logFileName, sequences
multiplier← 1000000
sequenceID← findDevIDInFile(logFileName)∗ multiplier
sequencesIDs← ∅
while end of file not reached do

curMessage← sequences[i]
i← i + 1
sequencesIDs[i]← sequenceID
if curSequence == lastMessageInSequence then

//last message of the current sequence
sequenceID← sequenceID + 1

else

end
end

Algorithm 1: Pseudocode algorithm for assigning a sequence ID
to the messages in a log file, executed by every mapper in parallel

6.1.3 HMM Initialization and Training. In phase (3) of Section 4.2.1,
an HMM is initialized with a single state and the symbols of the
observations contained in sequences. After identifying sequences
in phase (2), these are used in phase (3) of Section 4.2.1 to train an
HMMwith the Baum-Welch algorithm. For initializing anHMMand
then training it, I made use of an open-source HMM implementation

1The code of my HMM Hadoop Map-Reduce script is available at www.github.com/
DanyEle/Hadoop_HMM
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Figure 1: Scheme of the full parallelization of the Initialization phase for HMM initialization and training, implemented in
the R-based script of [8]. Only the part highlighted in red was actually implemented in the Hadoop-based version of my script
and it is shown in more detail in Figure 2.
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Figure 2: Scheme of theMap-Reduce parallelization employed for phases (1), (2) and (3) of the Initialization phase implemented
in my Hadoop-based script.

in Java by Haifeng Li [6], whose code was tuned to fit my data
format.

6.2 Version 1 - File name as Mapper key
• Map Phase: In an initial version, I made use of the log file
name as key and all the sequences identified in the file were

output as values, as shown in Figure 3. Also, the whole file
content was fully loaded into a single String before being
processed.
• Reduce Phase: In the reduce phase, all the sequences asso-
ciated to all keys received by the reducer are merged into
one single set of sequences. In this reduce phase, an HMM
is initialized with one single state and the set of sequences

4



HMM creation in Hadoop Map-Reduce PAD, 1st Semester, A.Y. 2018-2019

received from all mappers is used to train the newly cre-
ated HMM with the Baum-Welch algorithm. In this reduce
phase, received sequences are also output for further pro-
cessing in the following phase, as described in phase (4) of
the Initialization Phase.
Issues: The Version 1 implementation version rose a Java
heap space error when processing more than two files at
the mappers because each file content was stored into a
string and the whole file acted as a key being passed from
the mapper to the reducer, leading to very unefficient heap
space management.

OUTPUT

reduce

aggregate values by key

reduce reduce

INPUT

K: -

V: [Sequence1, Sequence2, Sequence3, Sequence4, Sequence6, Sequence7, Sequence8, …]  

map

K: BlazeData_Dev_1776.csv

V: [Sequence7, Sequence8,…]  

BlazeData_Dev_1776.csv

map

K: BlazeData_Dev_33.csv

V: [Sequence5, Sequence6,…]  

BlazeData_Dev_33.csv

map

K: BlazeData_Dev_302.csv

V: [Sequence3, Sequence4,…]  

BlazeData_Dev_302.csv

map

K: BlazeData_Dev_175.csv

V: [Sequence1, Sequence2,…]  

BlazeData_Dev_175.csv

Figure 3: Overview of version 1 of the Map-Reduce paral-
lelization described in 6.2.

6.3 Version 2 - Sequence ID as Mapper key
• Map Phase: The sequence ID is now the key of the map
phase, and the messages in the sequence represent the value
output by the map phase. However, also in this implementa-
tion, the whole file was still stored in a string before being
processed.
• ReducePhase: The reducer now takes as keys the sequences’
sequence IDs, whereas the values received at the reducer
consist of all messages lying in a certain sequence, which are
gathered into a single set. The HMM is initialized and trained
as described in Section 6.2, and the received sequences, to-
gether with their sequence IDs, are output for further pro-
cessing in phase (4) of the Initialization phase. Possibly, if
no HMM were to be trained in this phase, multiple reducers
could be used.
Issues: The Version 2 implementation improved over the
performance attained by Version 1, described in Section 6.2,
allowing to process tens of log files in parallel, provided each
log files was no larger than 1 MB of size. If larger files were
attempted to be parsed, these would cause a Java heap space
error. The reason for such issue was tracked down to be the
loading of the full log file content into a String.
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INPUT

map
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Figure 4: Overview of version 2 of the Map-Reduce paral-
lelization described in 6.3.

6.4 Version 3 - Optimized File Parsing
• Map Phase: I optimized the file-parsing process to avoid
loading a full log file into a string by parsing the log file in
binary format character-by-character and keeping in mem-
ory only the very essential information required to process
a sequence. From a theoretical point of view, the program
has been transformed into a data-stream parallel program in
the map phase, in which the stream is represented by every
single line of the file being parsed . Furthermore, this code
properly exploits the streaming-based data access pattern
of Hadoop. The steps of this new data-stream approach are
depicted in Algorithm 2.

Data: logFile in binary format
curLine← ∅
while not at end of this log file do

curCharacter← (char) logFile[i]
if curCharacter == ’\n’ then

//end of the current line has been reached
process(curLine)

else
//end of the current line not yet reached.
curLine← curLine + curCharacter

end
i← i + 1

end
Algorithm 2:Algorithm for the efficient parsing of the sequences
within a log file in Θ(n) time and requiring O(1) space .

Algorithm 2 parses the log file character by character and
runs in Θ(n) time. Its space occupancy is O(1), as the only
data being stored is the line currently being parsed (curLine),
the character currently being parsed (curCharacter), along
with other singleton variables for keeping track of the se-
quenceID, the last valid timestamp seen and the duration
of the current sequence (which have been omitted in the
pseudocode for sake of clarity). This O(1) space occupancy
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is a large improvement over the O(n) space occupancy of
Version 1 and 2, in which the whole file was loaded into a
string. Such optimization is based on the intuition that we do
not actually need to keep the whole log file in memory all the
time, but simply need to keep track of the most updated infor-
mation needed to process the current sequence adequately
whenever the end of a line is reached. The sequence-wise
processing of files in the map phase was maintained as that
of Version 2, so the key and the value of the map phase are
the same as those of Version 2 described in Section 6.3.
• Reduce Phase: See the reduce phase of Version 2 in Section
6.3.

7 EXPERIMENTAL EVALUATION
In this section, I compare the performance of phases (1), (2) of the
Initialization Phase of the Hadoop Map-Reduce script for phases (1)
and (2) of the program. Phase (3), involving the creation and training
of an HMM, was not evaluated because both the R-based and the
Hadoop-based versions are dependent on an external library, whose
performance would substantially impact the overall runtime. In
fact, the R-based version for HMM training is way slower than the
Hadoop-based version and this fact would potentially skew the
experimental results.

7.1 Initial approach - Fixed data, variable
mappers

In an initial attempt at evaluating the performance of the Hadoop
Map-Reduce program, I tried to keep the data fixed (i.e. all 145
datasets) and changed the amount of mappers processing the data.
This approach was possible for the R-based version, but was not
possible in the Hadoop-based version: despite my efforts at chang-
ing the amount of mappers processing data at the same time in
Hadoop, no solution was found to change the amount of mappers in
a Hadoop program, as this amount depends on the amount of files
being passed as input. No way was found to change the amount of
virtual cores (vcores) either, as Linux commands to set the amount
of cores allocated to a certain Hadoop script did not have any effect
(coreset - c). Therefore, a different approach was adopted to
evaluate the Hadoop-based version, which is described in Section
7.2.

7.2 Final approach - Variable data, variable
mappers

Hadoop Version: Following the observations drawn in Section 7.1,
I looked for other approaches to evaluate the Hadoop-based ver-
sion with a varying amount of mappers. Namely, I noticed that
the amount of mappers in Hadoop was equal to the amount of
map tasks submitted because of the File-wise inputSplitFormat
adopted. Consequently, I decided to vary the amount of map tasks
(i.e.: log files being given as input to the program), which would au-
tomatically imply a certain amount of mappers in the Hadoop-based
version.

n map tasks⇒ n mappers

Local Laptop Xeon Phi

CPU Intel core i7-8650u
1.8 GHz, 8 cores

Intel Xeon Phi x20 (Knights Landing)
1.3GHz, 256 cores

RAM 16 GBs 46 GBs
Table 2: Hardware configurations used to test the Hadoop-
based version and the R-based version of the program for
phases (1) and (2) of the Initialization phase.

R-based Version: In the R-based version, I manually changed the
amount of mappers based on the amount of map tasks (i.e. : log
files) being passed as input to the R-based program.
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Figure 5: Runtime of the R-based program and the Hadoop-
based program tested on the hardware configuration out-
lined in Table 2

7.3 Performance Comparison
Finally, I evaluated the R-based program and the Hadoop-based
program on the hardware configurations shown in Table 2. Figure
5 reports the runtimes obtained by running the R-based version
and the Hadoop-based versionwith n ∈ [1, 2, 4, 8, 16, 32, 64, 128, 145],
wheren is the amount of log files passed and the amount of mappers
used. Both the R-Based program and the Hadoop-based program
were tested on the same log files and performed the same actions
(i.e: phase (1) and (2) of the Initialization Phase), with Hadoop
running in pseudo-distributed mode.

Xeon Phi: From Figure 5, it is remarkable but unsurprising to
note that the runtime of the Hadoop-based version overcomes the
performance of the R-based version when applied to a large amount
of log files (n ≥ 128) on the Xeon Phi machine. The motivation
for this fact is two-fold: on the one hand, the poorer performance
of Hadoop with n < 128 is due to the large overhead of Hadoop’s
HDFS in distributing and handling files. On the other hand, this
result is imputable to the large sequential computation involved in
each mapper when assigning sequence IDs, which is upper bounded
by the mapper that is assigned the largest log file. Such sequential
computation is run slowly by the 1.3 GHz CPU of the Xeon Phi.
Furthermore, Hadoop is a framework optimized for achieving high
throughput with big data, though this is generally balanced by a
higher latency.

6
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Local Machine: Both the Hadoop-based version and the R-
based version running on my local laptop outperform the perfor-
mance of the same versions ran on the Xeon Phi by a significant
amount. This is because the 1.8 GHz clock of my CPU is about 28%
faster than the 1.3 GHz clock of the Xeon Phi; furthermore, the local
Intel Core i7 is more suitable for regular sequential computations
than the Xeon Phi CPU, which is specifically optimized for handling
parallel computations that exploit all 256 cores intensively. In my
Hadoop-based program and in my R-based program, instead, not all
256 cores of the Xeon Phi can be fully and intensively exploited all
the time because of two reasons. 1) Only 145 log files exist and one
mapper (and core) is assigned to the processing of a single log file. 2)
Log Files are characterized by a high variance in size, consequently
leading to a high variance in the number of messages contained
therein, as shown in Figure 6. Therefore, a worse performance is
attained when running the R-based version and the Hadoop-based
version on the Xeon Phi than on my local machine because of the
strong impact of the sequential computation.

Figure 6: The collection interval andnumber ofmessages for
each of the 145 developers’ log files in the dataset.

The high variance in log files’ size reflects onto the variable
processing time required to process each file’s content and does
not allow to fully utilize all cores available all the time. (i.e.: with
128 cores, very small files will be processed straight away and the
cores assigned to their processing will stay idle thereafter).

Figure 8 and Figure 7 show the utilization of the Xeon Phi’s
cores when running respectively the Hadoop-based version and the
R-based version. It is worth noting that the Hadoop-based version
uses very little resources in each CPU, whereas the R-based version
makes a very intensive usage of the underlying resources. Yet, the
Hadoop-based version outperforms the R-based version on both
hardware benchmarks when running with n ≥ 128.

7.4 Ideal and Effective Service time
The ideal service time Tid (n) of the Hadoop program running with
n mappers and n map tasks is defined in Formula 5 of Section
5. Namely, Tid (n) represents the ideal time we would obtain if

Figure 7: TheCPUusage of theR-based implementation run-
ning on the Xeon PHI machine with n = 128

Figure 8: The CPU usage of the Hadoop-based implementa-
tion running on the Xeon PHI machine with n = 128

perfect scalability were achieved when increasing the amount of
workers and map tasks. Tef f (n) represents the effective service
time, namely the actual service time obtained when running the
job with n mappers and map tasks. The ideal and effective service
time of the different phases is s shown in Table 3 when running
the Hadoop program on the local machine by averaging three runs,
whereas Table 4 shows the ideal and effective service time when
running the Hadoop program on the Xeon Phi by averaging three
runs.

By observing Figure 9 and Figure 10, we notice that the effec-
tive service time of the Hadoop version closely matches the ideal
service time both when running in the local machine and on the
Xeon Phi, especially when increasing the amount of map tasks and
mappers beyond 128. This is explained by the fact that Hadoop is a
framework specifically built for achieving excellent scalability and
high throughput when handling large quantities of data..

8 CONCLUSIONS
In the present report, a Hadoop Map-Reduce script for creating
and training Hidden Markov Models was presented. Firstly, an
introduction to the problem at hand was given in Section 1 and 2.
Then, the related work inherent to the construction of HMMs was
presented in Section 3 and background information related to the

7
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n TEffectiveMapper(n) TIdealMapper(n) TReducer(n) TEffectiveTotal(n) TIdealTotal(n)
1 8 0.98 1 9 1.98
2 8 1.96 1 9 2.96
4 10 3.92 1 11 4.92
8 12 7.83 1 13 8.83
16 19 15.67 1 20 16.67
32 35 31.34 2 37 33.34
64 67 62.68 3 70 65.68
128 133 125.35 3 136 128.35
145 142 142.00 5 147 147.00

Table 3: Effective Service time of the Mappers (TEffectiveMapper(n) ),

Ideal Service time of the mappers (TIdealMapper(n)), time spent
in the reducer phase(TReducer(n)), Total Effective service time
(TEffectiveTotal(n) = TReducer(n) + TEffectiveMapper(n)), Total Ideal Service Time

(TIdealTotal(n) = TIdealMapper(n) + TReducer(n)) for the Hadoop program
ran on the local machine. All times are given in seconds.

n TEffectiveMapper(n) TIdealMapper(n) TReducer(n) TEffectiveTotal(n) TIdealTotal(n)
1 26 4.86 2 28 6.86
2 26 9.72 2 28 11.72
4 30 19.45 5 35 24.45
8 50 38.90 5 55 43.90
16 87 77.79 6 93 83.79
32 148 155.59 9 157 164.59
64 332 311.17 12 344 323.17
128 655 622.34 18 673 640.34
145 705 705.00 19 724 724.00

Table 4: Effective service time for the mappers, ideal service
time of the mappers, time spent in the reducer phase, total
effective service time, total ideal service time for theHadoop
program ran on the Xeon Phi. The same formulas’ meaning
applies as those of Table 3.

very procedure to construct an HMM in an iterative manner was
presented in Section 4. In Section 5, the theoretical methodology for
parellelizing the construction of Hidden Markov Models by means
of a Map-Reduce program was presented. Instead, the the Hadoop
Java-based implementation details were described in Section 6.
Finally, in Section 7, the performance of the Hadoop Map-Reduce
program was compared with a pre-existing R-based version of the
program for different sizes of the dataset. Experimental evaluation
on dedicated parallel hardware and on a commodity laptop showed
that the performance of the Hadoop implementation overcame that
of the R-based implementation in case the dataset used is large,
whereas on a commodity laptop the Hadoop-based implementation
outperformed the R-based implementation for any dataset size. The
effective service time of the Hadoop version was also shown to be
very close to the ideal one, and the Hadoop implementation proved
to utilize the underlying CPU resources in a more efficient way
than the R-based version, leading to a consequent lower energy
consumption.
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Figure 9: The ideal vs the effective service time of the
Hadoop program when run on the local machine for n ∈
[1, 2, 4, 8, 16, 32, 64, 128, 145]

0

100

200

300

400

500

600

700

800

1 2 4 8 16 32 64 128 145

R
u

n
ti

m
e(

s)

Amount of map Tasks and mappers

Ideal vs Effective Service Time on the Xeon-Phi machine

Effective Service Time Ideal Service Time

Figure 10: The ideal vs the effective service time of the
Hadoop program when run on the Xeon Phi machine for
n ∈ [1, 2, 4, 8, 16, 32, 64, 128, 145]

9 INSTRUCTIONS TO RUN THE HMM
MAP-REDUCE PROGRAM

(1) Log into the XeonPhi machine via SSH.
(2) Navigate to my home folder:

cd /home/spm18-gadler
(3) Start Hadoop:

./start_hadoop.sh
(4) Adjust the amount of datasets to be used by the HMM Map-

Reduce program by adding or removing datasets from the
folder "/home/spm18- gadler/ABB_Logs"

(5) Load the datasets in the ABB_Logs folder onto Hadoop’s
HDFS:
hadoop fs -put ABB_Logs ./

(6) Navigate to the code project folder:
cd HMM_MapReduce

(7) Actually run the HMM Map Reduce program, passing the
folderwith the input log files on theHDFS to the run_program.sh

8
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script:
./run_program.sh ABB_Logs
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