
Parallelization of an R Script for the Automatic Iterative Building of

a Hidden Markov Model

Daniele Gader
Department of Computer Science, University of Pisa

Parallel and Distributed Systems course

2nd Semester of Academic Year 2017-2018

1 Application Introdution

1.1 Approach

As part of my Bachelor thesis in Computer Science and Engineering at the Free University of Bolzano-Bozen,
I worked on the creation of a method to automatically and iteratively build process models representing the
intents of users while interacting with a software system. In such process models, intents are expressed as a set
of actions performed by a user to a system to achieve specific use goals [3].
In my method, I applied the theory of Hidden Markov Models (HMMs). HMMs are Markov Chains where the
system under study is assumed to have hidden states [8]. HMMs’ states represent users’ intentions, symbols
represent unique user actions and observations consist of the overall set of interactions with the system under
study.
My approach was inspired by Damevski et al. ’s Interactive and Iterative approach [2]: in fact, Damevski
et al. build IIHMMs (Interactive Iteratively built Hidden Markov Models), whose construction requires the
interaction of a human expert to identify interesting sequences. Instead, my approach is aimed at automatizing
Damevski et al.’s approach, as we now build AIHMMs (Automatic Iteratively built HMMs), which require no
human intervention for their construction.

1.2 Objective and Dataset

I would like to apply my method for the construction of an AIHMM to the dataset employed by Damevski et
al. [1] for the construction of an IIHMM, as decribed in [2] (i.e. carry out a replication study with my method
over the same dataset).
Damevski et al.’s dataset contains developers’ interactions logs with the Visual Studio IDE.

1.3 Scripts’ Functioning Overview

In practice, I created a set of R scripts [4] to mine usage logs of a system for the construction of an AIHMM
and IIHMM. In this report, I focus uniquely on AIHMM’s construction.
The sequential AIHMM construction procedure is made up of two phases: an Initialization Phase, and an
Iterative Phase.

1.3.1 Initialization Phase

The Initialization Phase represents the program’s bottleneck, as it takes more than one month to run with the
dataset under study and it is described in detail in Section 3.1, along with a proposed parallelization for it.

1.3.2 Iterative Phase

The iterative phase is aimed at finding an HMM model characterized by the least possible log-likelihood (i.e:
the best possibly model). In every iteration, a new state is added, onto that symbols present in the interesting
sequences are constrained. The iterative phase is made up of three sub-phases, which are outlined in the
following paragraph. If either of the halting conditions outlined in the three sub-phases is met, the iterative
phase stops.

1

1. Most interesting sequences’ identification: The most interesting sequences are identified based on
the dataset’s observations and the HMM(n), where n is the current iteration index. Interesting sequences
are defined as sequences that are well captured by the dataset’s observations, but are not well captured
by the HMM(n) model [7] . If no interesting sequences are identified, the AIHMM generation phase stops
and HMM(n) is returned.

2. Log-Likelihood comparison: HMM(n+ 1) is created by adding a new state to HMM(n). The symbols
present in the interesting sequences are then constrained to this new state. Afterwards, the log-likelihood
of HMM(n) and HMM(n+ 1) are compared.

HMM(n+ 1) is further checked in bullet (3) if log-lik(HMM(n+1)) > log-lik(HMM(n))

HMM(n) is returned and the iterative process terminates if log-lik(HMM(n+ 1)) ≤ log-lik(HMM(n))

3. Comparison of constrained HMM(n+ 1) with unconstrained HMM(n+ 1): In every iteration,
after symbols identified in interesting sequences are constrained onto the new state of HMM(n+1), an
unconstrained model of HMM(n+1) is created and trained (i.e: with no symbols constrained onto the
newly added state). Then, the log-likelihood of these HMMs is compared. HMMC stands for “HMM
Constrained”, whereas HMMU stands for “HMM Unconstrained”.

HMMC
(n+ 1) is passed to iteration n+ 1. if log-lik(HMMC

(n+1)) > log-lik(HMMU
(n))

HMM
(n+1)
C is returned and the iterative process terminates if log-lik(HMMC

(n+ 1)) ≤ log-lik(HMMU
(n))

2 Proposed Parallelization

2.1 Problem Statement

The initialization phase of the sequential version of the R scripts for the creation of AIHMMs currently takes
more than one month to complete the processing of the whole input dataset under study. On the other hand,
the Iterative Phase just takes approximately one hour to process every iteration. Ideally, I would like to process
this input dataset and future datasets within a few hours with a sufficiently powerful machine.

2.2 Problem solution

Because the computation is a data-parallel one, I would like to decrease the Tc (completion time) of the initial-
ization phase, by parallelising functions characterized by a very lengthy latency, which represent bottlenecks in
the initialization phase. In the Initialization Phase, the bottleneck is represented by functions for the sequences’
identification and for the θ - frequent sequences’ identification.
Hence, I am going to carry out an analysis of the speedup and scalability achievable in theory and achieved in
practice through the analysis of the serial and the potentially parallel part of the program for the Initialization
Phase of the R scripts.

3 Design - Initialization Phase

3.1 Parallelization of the Initialization Phase

The initialization phase is made up of the following sub-phases. In the following paragraphs, “Workers” is used
as a synonym for threads, as the whole analysis was carried out on a shared memory machine.

1. Dataset loading and pre-processing A set of M independent datasets of developers’ interactions with
an IDE (observations) need to be loaded from the disk. One dataset corresponds to actions carried out
by one single developer over a few months. Furthermore, some pre-processing of the dataset needs to be
performed too, in that outlier symbols are removed.
Initial Parallelization: In an early parallel implementation, I first merged all the datasets into one single
data structure, from which outliers are removed, then I split the datasets onto N available workers, which
will then proceed to process them in phase (2). However, this merging and splitting phases actually
serialized the program uselessly. The first three stages of Figure 1 represent such operations.
Final Parallelization: A Map is used for such data-parallel parallelization to reduce the Tc of this phase:
datasets are first loaded from the disk in parallel and independently, then these are pre-processed in
parallel to remove outlier symbols. Stages “Load Datasets from Disk” and “Remove Outliers” within the
Map of Figure 2 represent such operations.

2

2. Sequences’ identification Actions in the set of observations loaded from the dataset are grouped into
sequences (i.e: actions performed in a timeframe of no more than 30 seconds from one another carried out
by the same developer) and a sequence ID is assigned to every sequence. For this reason, datasets cannot
be partitioned and need to be processed integrally. (i.e: one dataset cannot be split among two workers
unless the temporal ordering of sequences carried out by the same developer is re-established).
Initial Parallelization: A Map is used to reduce the Tc of this phase. The M datasets are assigned
statically onto the N workers, which process work as it comes. However, this would lead to severe load-
balancing issues in case M > N . In fact, datasets are very diverse in size (i.e: the work to carry out is
linearly dependent on the size of each file) and the speedup achievable in such parallelization is limited
by the largest dataset. Should the largest dataset be scheduled at the end of the computation, this will
prolong the computation uselessly. The map of Figure 1 represents such parallelization.
Final Parallelization: An LJF scheduling policy is implemented (Longest Job First) in the map’s scheduler
on Figure 2. Namely, largest datasets are processed first, to ensure good load balancing in case M > N .
This is done to avoid that largest files are scheduled in the final phases of the map’s computation: this
would prolong the computation. Still, the speedup achievable in such parallelization is limited by the
largest dataset. After the sequences are marked with the corresponding sequence ID in the map’s workers,
these are merged, allowing to extract all the sequence IDs from them. Stages “LJF Scheduler” and
“Sequences’ Identification” of the map in Figure 2 represent such parallelization. The phase (1) and (2)
are represented as a map in stage (1),(2) of Figure 3.

3. HMM initialization and training: An HMM is initialized with one single state and unique actions
in the dataset are taken as symbols. Then, the HMM is trained with the Baum-Welch algorithm, which
maximizes symbols’ probability in the HMM, based on all observations loaded from all datasets.
Parallelization: No parallelization has been implemented for the Baum-Welch Algorithm, as it is a very
complex machine-learning algorithm [6] and does not represent the main bottleneck of the program. In
fact, the Baum-Welch Algorithm takes approximately half an hour to to run with all 50 datasets. Stage
(3) of Figure 3 represents such phase.

4. Sequences’ Sorting: After all sequences are identified in phase (2), these are sorted in lexicographical
order to allow for efficient θ-frequent and θ-probable sequences’ computation, as in [2].
Parallellization: Because sequences characterized by the same sequence ID cannot be split, the resulting
partitions of step (2) are passed over to this algorithm and a Map with N workers was meant to be
applied to these partitions. However, a Map with N threads proved to cause too many cache faults.
Consequently, processing occurs only with 1 thread over the different partitions. Further motivations and
analysis underlying this choice are given in Section 5.2. Stage (4) of Figure 3 represents the present phase
(4)

5. θ-frequent sequences identification: Sequences occurring very frequently in the dataset are identified
according to Algorithm 2, as by [2], based on the set of sorted sequences resulting from phase (4).
Parallelization: A map is applied, in that the set of sorted sequences is first partitioned into N equally-
sized partitions, where N is the amount of workers available, to ensure good load balancing. Secondly, each
partition is assigned to one of the M workers, which applies the sequential algorithm for theta-frequent
sequences’ identification. Finally, the resulting processed partitions are merged. Stage (5) of Figure 3
represents phase (5).

6. Unconstrained HMM training and new log-likelihood computation: In this step, an uncon-
strained HMM with two states is created and trained over the set of observations of the dataset Further-
more, the log-likelihood of this newly created unconstrained HMM is computed..
Parallelization: Analogously to phase (3), no parallelization is applied to the Baum-Welch Algorithm.
Stage (6) of Figure 3 represents phase (6).

3.2 Initial vs Final Parallelization for Phases (1) and (2)

Before proceeding with the coding phase of the two proposed parallel solutions, I first analyzed the Initial
Parallelization and the Final Parallelization with the RPLSH tool [5] for phases (1) and (2) of the Design
Phase in Chapter 3.1. Following are the resulting designs and the latency of the two parallel solutions.

3.2.1 Initial Parallelization - Phases (1) and (2)

The latency times picked for the different phases corresponds approximately to the order of magnitude of the
computations represented.

3

𝑾𝟎

𝑾𝑵−𝟏

Merge

Datasets into

one Data

Structure

.

.

.

𝐹0

𝐹1

𝐹2

𝐹𝑀−1

𝐿 = Latency

M = Amount of datasets

N = amount of workers

𝐹0,…, 𝐹𝑀−1 = Datasets’ on the disk

𝐷0,…, 𝐷𝑀−1 = Loaded datasets in random order, with no outliers

D = Single data structure containing all datasets

𝐸0,…, 𝐸𝑀−1 = Partitions of sequences

Sequences’

Identification

Sequences’

Identification

Merger

𝐸𝑀−1

𝐿 =1

𝐿 = 10000

𝐿 =1

Load

Datasets

from

Disk

𝐿 = 500 𝐿 = 3000

Remove

Outliers

𝐿 = 10000

𝐷
Static

Scheduler

𝐸0

𝐷𝑀−1

𝐷0

Figure 1: Design of the Initial Parallelization for phases (1) and (2)

rp l sh> l o a d d a t a s e t s f r o m d i s k = seq (500 , true)
rp l sh> m e r g e d a t a s e t s i n t o o n e d a t a s t r u c t u r e = seq (3000 , true)
rp l sh> r e m o v e o u t l i e r s = seq (10000 , true)
rp l sh> s e q u e n c e s i d e n t i f i c a t i o n = seq (500000 , true)
rp l sh> s e q u e n c e s i d e n t i f i c a t i o n m a p = map(s e q u e n c e s i d e n t i f i c a t i o n , 50)
rp l sh> i n i t i a l i z a t i o n p h a s e = comp(l o a d d a t a s e t s f r o m d i s k ,

m e r g e d a t a s e t s i n t o o n e d a t a s t r u c t u r e ,
r emove out l i e r s , s e q u e n c e s i d e n t i f i c a t i o n m a p)

rp l sh> show i n i t i a l i z a t i o n p h a s e by la t ency
23502.000000 [0] : comp(l o a d d a t a s e t s f r o m d i s k ,
comp(m e r g e d a t a s e t s i n t o o n e d a t a s t r u c t u r e
, comp(remove out l i e r s , s e q u e n c e s i d e n t i f i c a t i o n m a p)))

Listing 1: RPLSH code used to design the initial parallelization

3.2.2 Final Parallelization - Phases (1) and (2)

FINAL PARALLELIZATION:
rp l sh> l o a d d a t a s e t s f r o m d i s k = seq (500 , true)
rp l sh> r e m o v e o u t l i e r s = seq (10000 , true)
rp l sh> s e q u e n c e s i d e n t i f i c a t i o n = seq (500000 , true)
rp l sh> map three s teps = comp(l o a d d a t a s e t s f r o m d i s k , r emove out l i e r s ,

s e q u e n c e s i d e n t i f i c a t i o n)
rp l sh> map three s tages = comp(l o a d d a t a s e t s f r o m d i s k , r emove out l i e r s ,

s e q u e n c e s i d e n t i f i c a t i o n)
rp l sh> i n i t i a l i z a t i o n p h a s e = map(map three stages , 50)
rp l sh> show i n i t i a l i z a t i o n p h a s e by la t ency
10212.000000 [0] : map(map three s tages) with [nw : 50]

Listing 2: RPLSH code used to design the final parallelization

• Latency for the Initial Parallelization: 23502.00

• Latency for the Final Parallelization: 10212.00

The latency of phases (1) and (2) is greatly reduced in the Final Parallelization of Figure 2 wrt. the
Initial Parallelization of Figure 1. In fact,the final parallelization’s latency is not only reduced because the
functions “load_datasets_from_disk”, “remove_outliers”, “sequences_identification” are executed by
the workers of the map, but also because of these facts:

4

𝑾𝟎

𝑾𝑵−𝟏

LJF

Scheduler

.

.

.

𝐹0

𝐹1

𝐹2

𝐹𝑀−1

𝐿 = Latency

M = Amount of datasets

N = amount of workers

𝐹0,…, 𝐹𝑀−1 = Datasets’ filenames and sizes

𝐷0,…, 𝐷𝑀−1 = Loaded datasets by decreasing size

𝐸0,…, 𝐸𝑀−1 = Partitions of sequences

𝐷0

𝐷𝑀−1

Load

Datasets

from

Disk

Load

Datasets

from

Disk

Remove

Outliers

Sequences’

Identification

Sequences’

Identification

Remove

Outliers

Merger

𝐸0

𝐸𝑀−1

𝐿 =10

𝐿 =1

𝐿 = 200 𝐿 = 10000

𝐿 =1

.

.

.

.

.

.

Figure 2: Design of the Final Parallelization for phases (1) and (2)

1. Absence of the “merge_datasets_into_one_data_structure step of phase (1) in the Final Paralleliza-
tion.

2. Replacement of the Static Scheduler of the Initial Parallelization with the LJF Scheduler in the Final
Parallelization.

3.3 Final Parallelization Outline

Following is a scheme of the full Final parallelization scheme used for the program.

𝑾𝟎

𝑾𝑵−𝟏

LJF

Scheduler

.

.

.

Merger Partitions

Scheduler

HMM

Training 𝑾

𝑾𝟎

𝑾𝑵−𝟏

.

.

.

Partitioner
Merger

𝐹0

𝐹1

𝐹2

𝐹𝑀−1

M = Amount of datasets

N = amount of workers

𝐹0,…, 𝐹𝑀−1 = Datasets’ filenames and sizes

𝐷0,…, 𝐷𝑀−1 = Loaded datasets by decreasing size

𝐸0,…, 𝐸𝑀−1 = Partitions of sequences

𝐺 = Sorted sequences

𝐺0,…, 𝐺𝑁−1 = Partitions of sorted sequences

𝐻 = θ-frequent sequences

1 and 2. Datasets loading, preprocessing

and sequences identification

3. HMM initalization

and training
4. Sequences sorting

𝐸0

𝐸1

𝐸2

𝐸𝑀−1

𝐸0

𝐸1

𝐸2

𝐸𝑀−1

𝐷0

𝐷𝑀−1

𝐸0

𝐸𝑀−1

5. θ-frequent sequences identification

𝐺

𝐺0

𝐺𝑁−1

.

.

.

𝐻

HMMU

Training

6. Training of the

unconstrained HMM

Merger

Figure 3: Outline of the Final Parallelization for phases (1),(2),(3), (4) and (5) and (6) of the Design Phase in
Section 3.1

5

4 Performance Modelling

Based on the Parallelizations outlined in Figure 3, I modelled the Completion Time of the parallelized initial-
ization phase as follows. The superscript of each step is the index of the phase considered.

To(N) = T 1,2
Sort+T1,2

Datasets+T 1,2
Merge+T 3

HMM +T 4
SequencesSort+T

4
Merge+T 5

Partition+T5
θ−freq+T 5

Merge+T 6
HMMU

The bold terms represent the parts of the program that have been parallelized, whereas all the other terms
represent sequential parts. Consequently, I expect my program’s speedup to be bounded by the sequential parts
and by the constraints imposed by T 1,2

Datasets.

T 1,2
Sort, T

1,2
DatasetsT

1,2
Merge: Phases (1), (2) of Section 3.1. T 1,2

Sort, although not shown in Figure 3, is a pre-processing
phase embedded in the LJF scheduling phase, in that datasets are sorted according to their size in a decreasing
order. Datasets’ sorting was necessary to allow for LJF scheduling, as the scheduler of the “mcmapply” function
used to parallelize the sequences’ identification step actually assigns data to the workers based on the order of
the datasets within the data structure containing the datasets’ sizes.

T 1,2
Datasets =

max(TDataset1, ..., TDatasetM) if N > M
M∑
i=1

TDataseti

N
if N ≤M

Where M is the amount of datasets used and N is the amount of workers. TDataseti is the time to load,
pre-process and identify the sequences contained in the i-th dataset.

T 3
HMM : Phase (3) of Section 3.1
T 4
SequencesSort and T 4

Merge: Phase (4) of Section 3.1. In T 4
Merge all the sequences sorted in the T 4

SequencesSort

phase are merged into one data structure.
T 5
Partition, T

5
θ−freq, T

5
Merge. Phase (5) of Section 3.1. In T 5

Partition, the sorted sequences from phase (4) are

partitioned into N partitions, where N is the amount of workers available. In T 5
Merge, the θ-frequent sequences

are merged into one data structure.

T 5
θ−freq =

M∑
i=1

Tθ−freqi

N

T 6HMMU : Phase (6) of Section 3.1.

5 Implementation

5.1 Implementation Structure

All the code produced and modified for the present project was written in R, an ”impure” functional program-
ming language that allows for side effects. Hence, my code is simply a collection of functions that invoke one
another. The AIHMM generation code is organized in three main files:

• AIHMM Generation.R: Contains the ”main” and invokes functions from the ”Common Functions.R”
for the different steps of the AIHMM generation process

• Common Functions.R: Contains all the different functions needed for the AIHMM Generation process.
(i.e: steps (3), (4), (5) and (6) of 3.1).

• Damevski Preprocessing.R: Contains functions needed for the pre-processing of the dataset of Damevski
et al. [2] (i.e: steps (1) and (2) of 3.1).

All of my code is also available on my Github Repository 1.

1www.github.com/DanyEle/HMM

6

www.github.com/DanyEle/HMM

(a) Cache faults while processing se-
quences with one thread

(b) Cache faults while processing se-
quenceswith seven threads

Figure 4: Cache faults resulting from running Step (4) of Section 3.1 on my laptop

Sequence
ID

Memory Address (HEX) Memory Address (DEC)

1 6172598 102180248
2 6172538 102180152
3 61724d8 102180056
4 686d4a8 109499560
5 59bf0d8 94105816
...
17 59bea18 94104088
18 59be988 94103944
19 75958a8 123295912
20 7595848 123295816

Table 1: Memory addresses of the first 20 Sequence IDs of Dataset 235

5.2 Notable Implementation Details

A very notable detail of my program is represented by phase (4) of Section 3.1, namely the Sequences’ sorting
phase. In the parallel part of this function (namely in the function ”generateListsForSequences), firstly all the
sequence IDs are extracted by taking the unique Sequence IDs of the data frame produced in Step (1), (2) of
Section 3.1. Then, in the following vectorial operation, we iterate over all the unique sequence IDs identified:

s e q u e n c e s L i s t s = lapply (unique (sequences$SequenceID) , function (sequenceId)
sequences [sequences$SequenceID==sequenceId ,])

Ideally, we would like to parallelize this operation with a map, hence splitting the sequences into N chunks
over M workers. However, Table 1 shows that sequence IDs are not always contiguous in memory. This memory
discontinuity prevents the program from using spatial locality in caches properly, as we often ”jump” to very
discontinuous memory addresses and lots of I/O cache faults are generated. When using multiple cores, the
amount of cache faults increases even further, as multiple cores content for memory. Figure 4(b) shows the
effect of running step (4) of Section 3.1 on my laptop with seven cores: the CPU (an i7 4770HQ) is constantly
in an “IOWait” state, whereas the disk is intensely utilized in read and write operations. A similar effect was
experienced on the KNL machine, but I had no way to monitor it via the “resource monitor” GUI tool.
On the other hand, by using a single core, less cache faults are generated and less contention for memory is
experienced, as by Figure 4(a). Also, no temporal locality (reuse) is exploitable in this computation either,
because one sequence ID is discarded after using it.

6 Experimental Validation and Speedup Analysis

6.1 Experimental Methodology

The initialization phase for AIHMM construction was ran with N = 1, 2, 4, 8, 16, 32, 50, 64 and 128 workers.
The amount of datasets used (M) was 50 due to time constraints in running the experiments. All the experiments

7

were ran 10 times, and the minimum and maximum of each measurement were discarded. All the times are
expresses in seconds (s).

6.2 Serial and Parallel Part, Overall Time

The Serial Part Ts(N) uniquely consists of the completion time of the serial parts of the program. The Effective
Parallel Part Tp(N) consists of the completion time measured for the parallel parts of the program (T 1,2

Datasets

and T 5
θ−freq)

Ts(N) = T 1,2
Sort + T 1,2

Merge + T 3
HMM + T 4

SequencesSort + T 4
Merge + T 5

Partition + T 5
Merge + T 6

HMMU

The Ideal Parallel Part, the Effective Overall Time and the Ideal Overall Time are defined based on the
performance modelling of Chapter 4 respectively as:

TIDp(N) = T 1,2
Datasets + T 5

θ−freq To(N) = Ts(N) + Tp(N) TIDo = TIDp(N) + Ts(N)

Table 2: Measurement of the completion time of the initialization phase ran on the Xeon PHI machine
Amount

of Workers
(N)

Serial Part
Ts(N)

Effective
Parallel part

Tp(N)

Ideal parallel part
TIDp(N)

Effective
Overall time

To(N)

Ideal
Overall time
TIDo(N)

1 3210,764 2470,080 2470,080 5680,845 5680,845
2 3211,661 1443,115 1235,040 4654,776 4446,701
4 3211,032 794,062 617,520 4005,094 3828,552
8 3211,800 430,807 308,760 3642,607 3520,560
16 3211,000 234,184 154,380 3445,183 3365,380
32 3209,106 137,493 77,190 3346,600 3286,296
50 3209,605 85,411 49,402 3295,015 3259,006
64 3213,056 83,873 47,070 3296,929 3260,126
128 3235,353 96,261 42,905 3331,614 3278,258

3000,000

3500,000

4000,000

4500,000

5000,000

5500,000

6000,000

0 20 40 60 80 100 120 140

O
v
er

a
ll

 T
im

e
(s

)

Amount of workers (N)

Effective Overall Time Ideal Overall Time

(a) Plot of the Effective Overall Time To(N) and Ideal Overall Time
TIDo(N)

0,000

500,000

1000,000

1500,000

2000,000

2500,000

3000,000

0 20 40 60 80 100 120 140

P
a
ra

ll
el

 T
im

e
(s

)

Amount of workers (N)

Effective Parallel Time Ideal Parallel Time

(b) Plot of the Effective Parallel time Tp(N) and Ideal Par-
allel Time TIDp(N)

6.3 Speedup and Scalability

f , the serial fraction of the program (i.e. the part of the program that does not benefit from improved resources)
and p, the parallel fraction of the program (i.e: the part of the program that benefits from improved resources),
are defined as:

f =
Ts(1)

To(1)
=

3210, 764

5680, 845
= 0, 565 p = 1− f =

Tp(1)

To(1)
= 0, 435

8

The Speedup Sp(N), namely the improvement in the completion time of the program consequent to the
increased usage of resources, is defined as:

Sp(N) =
TSeq

f ∗ TSeq +
(1− f) ∗ TSeq

N

TSeq was set to be equal to To(1), as To(1) represents the best existing sequential version (i.e: the sequential
version with least Tc)

TSeq = 8022, 00 s To(1) = 5680, 845 s

=⇒ TSeq = To(1)

The Maximum theoretical speedup achievable (i.e: with an infinite amount of workers), is:

MaxSp(N) = lim
N→∞

TSeq

f ∗ TSeq +
(1− f) ∗ TSeq

N

=
���TSeq

f ∗���TSeq
=

1

f
=

1

0, 565
= 1, 769

The Scalability Sc(N) (i.e: the ability of the program to scale with an increasing amount of workers) and
the Ideal Scalability ScID(N) (i.e: the scalability based on the Ideal Overall time) are defined as:

Sc(N) =
To(1)

To(N)
ScID(N) =

TIDo(1)

TIDo(N)

Table 3 shows the experimental results obtained from applying the aforementioned formulas to the measure-
ments of Table 2.

Table 3: Computation of the speedup and scalability based on the measurements of Table 2
Amount of workers

(N)
Speedup
Sp(N)

Scalability
Sc(N)

Ideal scalability
ScID(N)

1 1,000 1,000 1,000
2 1,278 1,220 1,278
4 1,484 1,418 1,484
8 1,614 1,560 1,614
16 1,688 1,649 1,688
32 1,728 1,697 1,729
50 1,743 1,724 1,743
64 1,748 1,723 1,743
128 1,759 1,705 1,733

0,900

1,000

1,100

1,200

1,300

1,400

1,500

1,600

1,700

1,800

1,900

0 50 100 150

S
p

ee
d

u
p

(N
)

Amount of workers

Speedup (n)

Max. speedup

(c) Plot of the speedup and the maximum speedup achievable

0,900

1,100

1,300

1,500

1,700

1,900

0 20 40 60 80 100 120 140

S
ca

la
b

il
it

y
 (

N
)

Amount of workers

Scalability(N) Ideal scalability(N)

(d) Plot of the scalability and the ideal scalability

It’s worth noting that the maximum scalability is obtained with N = 50, where no extra overhead is paid
because of time spent in setting up extra idle threads for phase (1) and (2) (i.e: sequences’ identification and
pre-processing). In case N > M , N −M threads would remain idle with no dataset assigned to them. Also,
phase (5) (theta-frequent sequences computation) can benefit from all the threads being setup up to N = 64.
Upon increasing the amount of threads beyond 64, the parallel time stops decreasing and even starts increasing,
as the overhead in threads’ setup is doubled wrt. 64 workers: neither the theta-frequent sequences computation
nor the sequences’ identification parallel phases can benefit from the increased amount of threads.

9

7 Instructions to run the initialization phase code

1. Log into the Xeon PHI via SSH

2. Adjust the amount of datasets to be used by adding or removing datasets from the folder ”/home/spm18-
gadler/HMM/Datasets Damevski Small”, where all datasets are automatically loaded and used by the
AIHMM generation code. All existing datasets are stored in the folder
”/home/spm18-gadler/HMM/Datasets Damevski All”.

3. Go to the folder where the R project is located, then run R

cd /home/spm18−gad l e r /HMM #p a r a l l e l v e r s i o n
cd /home/spm18−gad l e r /HMM Seq #s e q u e n t i a l v e r s i o n
R

4. Load the content of the three files needed :

source (”Damevski Preproce s s ing .R”)
source (”AIHMM Generation .R”)
source (”Common Functions .R”)

5. (Optional) Set an output file

sink (” f i l e name . txt ”)

6. Run the following command to let the initialization phase begin, passing the amount of workers to be
used as a parameter of the function call. 2

run experiment workers (N)

8 Acknowledments

I would like to thank Dr. Massimo Torquati for useful input on how to design the dataset loading and the
scheduling policy for phases (1) and (2) in an efficient manner.

References

[1] Kostadin Damevski. ABB Visual Studio Developer Interaction Dataset. https://abb-iss.github.io/

DeveloperInteractionLogs/, 2013.

[2] Kostadin Damevski, Hui Chen, David Shepherd, and Lori Pollock. Interactive exploration of developer
interaction traces using a hidden markov model. In Proceedings of the 13th International Conference on
Mining Software Repositories, MSR ’16, pages 126–136, New York, NY, USA, 2016. ACM.

[3] D. Gadler, M. Mairegger, A. Janes, and B. Russo. Mining logs to model the use of a system. In 2017
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM), pages
334–343, Nov 2017.

[4] Russo Barbara Gadler Daniele, Janes Andrea. R Scripts for the creation of AIHMMs and IIHMMs. https:
//github.com/danyele/HMM, 2017.

[5] Gazzarri and Danelutto. A tool to support fastflow program design, March 2018.

[6] Scientific Software Development Dr. Lin Himmelmann and www.linhi.com. HMM: HMM - Hidden Markov
Models, 2010. R package version 1.0.

[7] Szymon Jaroszewicz. Using interesting sequences to interactively build hidden markov models. Data Mining
and Knowledge Discovery, 21(1):186–220, Jul 2010.

[8] Daniel Jurafsky and James H. Martin. Speech and Language Processing: An Introduction to Natural Lan-
guage Processing, Computational Linguistics, and Speech Recognition. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1st edition, 2000.

2If wanting to run the script on a local machine, further details can be found in the readme.txt file.

10

https://abb-iss.github.io/DeveloperInteractionLogs/
https://abb-iss.github.io/DeveloperInteractionLogs/
https://github.com/danyele/HMM
https://github.com/danyele/HMM

	Application Introdution
	Approach
	Objective and Dataset
	Scripts' Functioning Overview
	Initialization Phase
	Iterative Phase

	Proposed Parallelization
	Problem Statement
	Problem solution

	Design - Initialization Phase
	Parallelization of the Initialization Phase
	Initial vs Final Parallelization for Phases (1) and (2)
	Initial Parallelization - Phases (1) and (2)
	Final Parallelization - Phases (1) and (2)

	Final Parallelization Outline

	Performance Modelling
	Implementation
	Implementation Structure
	Notable Implementation Details

	Experimental Validation and Speedup Analysis
	Experimental Methodology
	Serial and Parallel Part, Overall Time
	Speedup and Scalability

	Instructions to run the initialization phase code
	Acknowledments

